9c62e5839f51f726634babafac1794d167a3a8a3
[silc.git] / doc / draft-riikonen-silc-spec-05.nroff
1 .pl 10.0i
2 .po 0
3 .ll 7.2i
4 .lt 7.2i
5 .nr LL 7.2i
6 .nr LT 7.2i
7 .ds LF Riikonen
8 .ds RF FORMFEED[Page %]
9 .ds CF
10 .ds LH Internet Draft
11 .ds RH XXX
12 .ds CH
13 .na
14 .hy 0
15 .in 0
16 .nf
17 Network Working Group                                        P. Riikonen
18 Internet-Draft
19 draft-riikonen-silc-spec-05.txt                        XXX
20 Expires: XXX
21
22 .in 3
23
24 .ce 3
25 Secure Internet Live Conferencing (SILC),
26 Protocol Specification
27 <draft-riikonen-silc-spec-05.txt>
28
29 .ti 0
30 Status of this Memo
31
32 This document is an Internet-Draft and is in full conformance with   
33 all provisions of Section 10 of RFC 2026.  Internet-Drafts are   
34 working documents of the Internet Engineering Task Force (IETF), its   
35 areas, and its working groups.  Note that other groups may also   
36 distribute working documents as Internet-Drafts.   
37
38 Internet-Drafts are draft documents valid for a maximum of six months   
39 and may be updated, replaced, or obsoleted by other documents at any   
40 time.  It is inappropriate to use Internet-Drafts as reference   
41 material or to cite them other than as "work in progress."   
42
43 The list of current Internet-Drafts can be accessed at   
44 http://www.ietf.org/ietf/1id-abstracts.txt   
45
46 The list of Internet-Draft Shadow Directories can be accessed at   
47 http://www.ietf.org/shadow.html   
48
49 The distribution of this memo is unlimited.  
50
51
52 .ti 0
53 Abstract
54
55 This memo describes a Secure Internet Live Conferencing (SILC)
56 protocol which provides secure conferencing services over insecure
57 network channel.  SILC is IRC [IRC] like protocol, however, it is 
58 not equivalent to IRC and does not support IRC.  Strong cryptographic
59 methods are used to protect SILC packets inside the SILC network.
60 Three other Internet Drafts relates very closely to this memo;
61 SILC Packet Protocol [SILC2], SILC Key Exchange and Authentication
62 Protocols [SILC3] and SILC Commands [SILC4].
63
64
65
66
67
68
69 .ti 0
70 Table of Contents
71
72 .nf
73 1 Introduction ..................................................  3
74   1.1 Requirements Terminology ..................................  4
75 2 SILC Concepts .................................................  4
76   2.1 SILC Network Topology .....................................  4
77   2.2 Communication Inside a Cell ...............................  5
78   2.3 Communication in the Network ..............................  6
79   2.4 Channel Communication .....................................  7
80   2.5 Router Connections ........................................  7
81 3 SILC Specification ............................................  8
82   3.1 Client ....................................................  8
83       3.1.1 Client ID ...........................................  9
84   3.2 Server .................................................... 10
85       3.2.1 Server's Local ID List .............................. 10
86       3.2.2 Server ID ........................................... 11
87       3.2.3 SILC Server Ports ................................... 12
88   3.3 Router .................................................... 12
89       3.3.1 Router's Local ID List .............................. 12
90       3.3.2 Router's Global ID List ............................. 13
91       3.3.3 Router's Server ID .................................. 14
92   3.4 Channels .................................................. 14
93       3.4.1 Channel ID .......................................... 16
94   3.5 Operators ................................................. 16
95   3.6 SILC Commands ............................................. 16
96   3.7 SILC Packets .............................................. 17
97   3.8 Packet Encryption ......................................... 17
98       3.8.1 Determination of the Source and the Destination ..... 17
99       3.8.2 Client To Client .................................... 18
100       3.8.3 Client To Channel ................................... 19
101       3.8.4 Server To Server .................................... 20
102   3.9 Key Exchange And Authentication ........................... 20
103       3.9.1 Authentication Payload .............................. 20
104   3.10 Algorithms ............................................... 22
105       3.10.1 Ciphers ............................................ 22
106       3.10.2 Public Key Algorithms .............................. 23
107       3.10.3 Hash Functions ..................................... 24
108       3.10.4 MAC Algorithms ..................................... 24
109       3.10.5 Compression Algorithms ............................. 25
110   3.11 SILC Public Key .......................................... 25
111   3.12 SILC Version Detection ................................... 27
112   3.13 Backup Routers ........................................... 28
113       3.13.1 Switching to Backup Router ......................... 29
114       3.13.2 Resuming Primary Router ............................ 30
115       3.13.3 Discussion on Backup Router Scheme ................. 32
116 4 SILC Procedures ............................................... 33
117   4.1 Creating Client Connection ................................ 33
118   4.2 Creating Server Connection ................................ 34
119       4.2.1 Announcing Clients, Channels and Servers ............ 35
120   4.3 Joining to a Channel ...................................... 36
121   4.4 Channel Key Generation .................................... 37
122   4.5 Private Message Sending and Reception ..................... 38
123   4.6 Private Message Key Generation ............................ 38
124   4.7 Channel Message Sending and Reception ..................... 39
125   4.8 Session Key Regeneration .................................. 39
126   4.9 Command Sending and Reception ............................. 40
127   4.10 Closing Connection ....................................... 41
128   4.11 Detaching and Resuming a Session ......................... XXXXX
129 5 Security Considerations ....................................... 41
130 6 References .................................................... 42
131 7 Author's Address .............................................. 44
132
133
134
135 .ti 0
136 List of Figures
137
138 .nf
139 Figure 1:  SILC Network Topology
140 Figure 2:  Communication Inside cell
141 Figure 3:  Communication Between Cells
142 Figure 4:  Router Connections
143 Figure 5:  SILC Public Key
144
145
146 .ti 0
147 1. Introduction
148
149 This document describes a Secure Internet Live Conferencing (SILC)
150 protocol which provides secure conferencing services over insecure
151 network channel.  SILC is IRC [IRC] like protocol, however, it is 
152 not equivalent to IRC and does not support IRC.
153
154 Strong cryptographic methods are used to protect SILC packets inside
155 the SILC network.  Three other Internet Drafts relates very closely
156 to this memo; SILC Packet Protocol [SILC2], SILC Key Exchange and
157 Authentication Protocols [SILC3] and SILC Commands [SILC4].
158
159 The protocol uses extensively packets as conferencing protocol 
160 requires message and command sending.  The SILC Packet Protocol is
161 described in [SILC2] and should be read to fully comprehend this
162 document and protocol.  [SILC2] also describes the packet encryption
163 and decryption in detail.
164
165 The security of SILC protocol, and for any security protocol for that
166 matter, is based on strong and secure key exchange protocol.  The SILC
167 Key Exchange protocol is described in [SILC3] along with connection
168 authentication protocol and should be read to fully comprehend this
169 document and protocol.
170
171 The SILC protocol has been developed to work on TCP/IP network
172 protocol, although it could be made to work on other network protocols
173 with only minor changes.  However, it is recommended that TCP/IP
174 protocol is used under SILC protocol.  Typical implementation would
175 be made in client-server model.
176
177
178 .ti 0
179 1.1 Requirements Terminology
180
181 The keywords MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, 
182 MAY, and OPTIONAL, when they appear in this document, are to be
183 interpreted as described in [RFC2119].
184
185
186 .ti 0
187 2. SILC Concepts
188
189 This section describes various SILC protocol concepts that forms the 
190 actual protocol, and in the end, the actual SILC network.  The mission
191 of the protocol is to deliver messages from clients to other clients 
192 through routers and servers in secure manner.  The messages may also 
193 be delivered from one client to many clients forming a group, also 
194 known as a channel.
195
196 This section does not focus to security issues.  Instead, basic network 
197 concepts are introduced to make the topology of the SILC network 
198 clear.
199
200
201 .ti 0
202 2.1 SILC Network Topology
203
204 SILC network is a cellular network as opposed to tree style network 
205 topology.  The rationale for this is to have servers that can perform 
206 specific kind of tasks what other servers cannot perform.  This leads 
207 to two kinds of servers; normal SILC servers and SILC routers.
208
209 A difference between normal server and router server is that routers 
210 knows everything about everything in the network.  They also do the 
211 actual routing of the messages to the correct receiver.  Normal servers 
212 knows only about local information and nothing about global information.
213 This makes the network faster as there are less servers that needs to 
214 keep global information up to date at all time.
215
216 This, on the other hand, leads to cellular like network, where routers 
217 are in the center of the cell and servers are connected to the router.
218
219
220
221
222
223
224
225 The following diagram represents SILC network topology.
226
227 .in 8
228 .nf
229   ---- ---- ----         ---- ---- ----
230  | S8 | S5 | S4 |       | S7 | S5 | S6 |
231  ----- ---- -----       ----- ---- -----
232 | S7 | S/R1 | S2 | --- | S8 | S/R2 | S4 |
233  ---- ------ ----       ---- ------ ----
234  | S6 | S3 | S1 |       | S1 | S3 | S2 |         ---- ----
235   ---- ---- ----         ---- ---- ----         | S3 | S1 |
236      Cell 1.   \\             Cell 2.  | \\____  ----- -----
237                 |                     |        | S4 | S/R4 |
238     ---- ---- ----         ---- ---- ----       ---- ------
239    | S7 | S4 | S2 |       | S1 | S3 | S2 |      | S2 | S5 |
240    ----- ---- -----       ----- ---- -----       ---- ----
241   | S6 | S/R3 | S1 | --- | S4 | S/R5 | S5 | ____/ Cell 4.
242    ---- ------ ----       ---- ------ ----
243    | S8 | S5 | S3 |       | S6 | S7 | S8 |     ... etc ...
244     ---- ---- ----         ---- ---- ----
245        Cell 3.                Cell 5.
246 .in 3
247
248 .ce
249 Figure 1:  SILC Network Topology
250
251
252 A cell is formed when a server or servers connect to one router.  In
253 SILC network normal server cannot directly connect to other normal
254 server.  Normal server may only connect to SILC router which then
255 routes the messages to the other servers in the cell.  Router servers
256 on the other hand may connect to other routers to form the actual SILC 
257 network, as seen in above figure.  However, router is also normal SILC 
258 server; clients may connect to it the same way as to normal SILC 
259 server.  Normal server also cannot have active connections to more 
260 than one router.  Normal server cannot be connected to two different 
261 cells.  Router servers, on the other hand, may have as many router to 
262 router connections as needed.
263
264 There are many issues in this network topology that needs to be careful
265 about.  Issues like the size of the cells, the number of the routers in 
266 the SILC network and the capacity requirements of the routers.  These
267 issues should be discussed in the Internet Community and additional
268 documents on the issue may be written.
269
270
271 .ti 0
272 2.2 Communication Inside a Cell
273
274 It is always guaranteed that inside a cell message is delivered to the 
275 recipient with at most two server hops.  A client which is connected to
276 server in the cell and is talking on channel to other client connected 
277 to other server in the same cell, will have its messages delivered from 
278 its local server first to the router of the cell, and from the router 
279 to the other server in the cell.
280
281 The following diagram represents this scenario:
282
283
284 .in 25
285 .nf
286 1 --- S1     S4 --- 5
287          S/R
288  2 -- S2     S3
289      /        |
290     4         3
291 .in 3
292
293
294 .ce
295 Figure 2:  Communication Inside cell
296
297
298 Example:  Client 1. connected to Server 1. send message to
299           Client 4. connected to Server 2. travels from Server 1.
300           first to Router which routes the message to Server 2.
301           which then sends it to the Client 4.  All the other
302           servers in the cell will not see the routed message.
303
304
305 If the client is connected directly to the router, as router is also normal
306 SILC server, the messages inside the cell are always delivered only with 
307 one server hop.  If clients communicating with each other are connected 
308 to the same server, no router interaction is needed.  This is the optimal
309 situation of message delivery in the SILC network.
310
311
312 .ti 0
313 2.3 Communication in the Network
314
315 If the message is destined to server that does not belong to local cell 
316 the message is routed to the router server to which the destination 
317 server belongs, if the local router is connected to destination router.
318 If there is no direct connection to the destination router, the local
319 router routes the message to its primary route.  The following diagram
320 represents message sending between cells.
321
322
323 .in 16
324 .nf
325 1 --- S1     S4 --- 5            S2 --- 1
326          S/R - - - - - - - - S/R
327  2 -- S2     S3           S1
328      /        |             \\
329     4         3              2
330
331    Cell 1.               Cell 2.
332 .in 3
333
334
335 .ce
336 Figure 3:  Communication Between Cells
337
338
339 Example:  Client 5. connected to Server 4. in Cell 1. sends message
340           to Client 2. connected to Server 1. in Cell 2. travels
341           from Server 4. to Router which routes the message to
342           Router in Cell 2, which then routes the message to 
343           Server 1.  All the other servers and routers in the
344           network will not see the routed message.
345
346
347 The optimal case of message delivery from the client point of view is
348 when clients are connected directly to the routers and the messages
349 are delivered from one router to the other.
350
351
352 .ti 0 
353 2.4 Channel Communication
354
355 Messages may be sent to group of clients as well.  Sending messages to
356 many clients works the same way as sending messages point to point, from
357 message delivery point of view.  Security issues are another matter
358 which are not discussed in this section.
359
360 Router server handles the message routing to multiple recipients.  If 
361 any recipient is not in the same cell as the sender the messages are 
362 routed further.
363
364 Server distributes the channel message to its local clients which are 
365 joined to the channel.  Router also distributes the message to its 
366 local clients on the channel.
367
368
369 .ti 0
370 2.5 Router Connections
371
372 Router connections play very important role in making the SILC like
373 network topology to work.  For example, sending broadcast packets in
374 SILC network require special connections between routers; routers must
375 be connected in a specific way.
376
377 Every router has their primary route which is a connection to another
378 router in the network.  Unless there is only two routers in the network
379 must not routers use each other as their primary routes.  The router
380 connections in the network must form a ring.
381
382
383
384
385
386
387
388 Example with three routers in the network:
389
390
391 .in 16
392 .nf
393     S/R1 - < - < - < - < - < - < - S/R2
394      \\                               /
395       v                             ^
396        \\ - > -  > - S/R3 - > - > - /
397 .in 3
398
399
400 .ce
401 Figure 4:  Router Connections
402
403
404 Example:  Network with three routers.  Router 1. uses Router 2. as its
405           primary router.  Router 2. uses Router 3. as its primary router,
406           and Router 3. uses Router 1. as its primary router.  There may
407           be other direct connections between the routers but they must
408           not be used as primary routes.
409
410 The above example is applicable to any amount of routers in the network
411 except for two routers.  If there are only two routers in the network both
412 routers must be able to handle situation where they use each other as their
413 primary routes.
414
415 The issue of router connections are very important especially with SILC
416 broadcast packets.  Usually all router wide information in the network is
417 distributed by SILC broadcast packets.  This sort of ring network, with
418 ability to have other direct routes in the network cause interesting
419 routing problems.  The [SILC2] discusses the routing of packets in this
420 sort of network in more detail.
421
422
423 .ti 0
424 3. SILC Specification
425
426 This section describes the SILC protocol.  However, [SILC2] and
427 [SILC3] describes other important protocols that are part of this SILC
428 specification and must be read.
429
430
431 .ti 0
432 3.1 Client
433
434 A client is a piece of software connecting to SILC server.  SILC client 
435 cannot be SILC server.  Purpose of clients is to provide the user 
436 interface of the SILC services for end user.  Clients are distinguished
437 from other clients by unique Client ID.  Client ID is a 128 bit ID that
438 is used in the communication in the SILC network.  The client ID is 
439 based on the nickname selected by the user.  User uses logical nicknames
440 in communication which are then mapped to the corresponding Client ID.
441 Client ID's are low level identifications and must not be seen by the
442 end user.
443
444 Clients provide other information about the end user as well. Information
445 such as the nickname of the user, username and the host name of the end 
446 user and user's real name.  See section 3.2 Server for information of 
447 the requirements of keeping this information.
448
449 The nickname selected by the user is not unique in the SILC network.
450 There can be 2^8 same nicknames for one IP address.  As for comparison
451 to IRC [IRC] where nicknames are unique this is a fundamental difference
452 between SILC and IRC.  This causes the server names or client's host names
453 to be used along with the nicknames to identify specific users when sending
454 messages.  This feature of SILC makes IRC style nickname-wars obsolete as
455 no one owns their nickname; there can always be someone else with the same
456 nickname.  The maximum length of nickname is 128 bytes.
457
458
459 .ti 0
460 3.1.1 Client ID
461
462 Client ID is used to identify users in the SILC network.  The Client ID
463 is unique to the extent that there can be 2^128 different Client ID's,
464 and ID's based on IPv6 addresses extends this to 2^224 different Client
465 ID's.  Collisions are not expected to happen.  The Client ID is defined
466 as follows.
467
468
469
470 .in 6
471 128 bit Client ID based on IPv4 addresses:
472
473 32 bit  Server ID IP address (bits 1-32)
474  8 bit  Random number or counter
475 88 bit  Truncated MD5 hash value of the nickname
476
477 224 bit Client ID based on IPv6 addresses:
478
479 128 bit  Server ID IP address (bits 1-128)
480   8 bit  Random number or counter
481  88 bit  Truncated MD5 hash value of the nickname
482
483 o Server ID IP address - Indicates the server where this
484   client is coming from.  The IP address hence equals the
485   server IP address where to the client has connected.
486
487 o Random number or counter - Random number to further 
488   randomize the Client ID.  Another choice is to use
489   a counter starting from the zero (0).  This makes it
490   possible to have 2^8 same nicknames from the same
491   server IP address.
492
493 o MD5 hash - MD5 hash value of the nickname is truncated
494   taking 88 bits from the start of the hash value.  This
495   hash value is used to search the user's Client ID from
496   the ID lists.
497
498 .in 3
499 Collisions could occur when more than 2^8 clients using same nickname
500 from the same server IP address is connected to the SILC network.  
501 Server MUST be able to handle this situation by refusing to accept 
502 anymore of that nickname.
503
504 Another possible collision may happen with the truncated hash value of
505 the nickname.  It could be possible to have same truncated hash value for
506 two different nicknames.  However, this is not expected to happen nor
507 cause any problems if it would occur.  Nicknames are usually logical and
508 it is unlikely to have two distinct logical nicknames produce same
509 truncated hash value.
510
511
512 .ti 0
513 3.2 Server
514
515 Servers are the most important parts of the SILC network.  They form the
516 basis of the SILC, providing a point to which clients may connect to.
517 There are two kinds of servers in SILC; normal servers and router servers.
518 This section focus on the normal server and router server is described
519 in the section 3.3 Router.
520
521 Normal servers MUST NOT directly connect to other normal server.  Normal
522 servers may only directly connect to router server.  If the message sent
523 by the client is destined outside the local server it is always sent to
524 the router server for further routing.  Server may only have one active
525 connection to router on same port.  Normal server MUST NOT connect to other
526 cell's router except in situations where its cell's router is unavailable.
527
528
529 .ti 0
530 3.2.1 Server's Local ID List
531
532 Normal server keeps various information about the clients and their end
533 users connected to it.  Every normal server MUST keep list of all locally
534 connected clients, Client ID's, nicknames, usernames and host names and
535 user's real name.  Normal servers only keeps local information and it
536 does not keep any global information.  Hence, normal servers knows only
537 about their locally connected clients.  This makes servers efficient as
538 they don't have to worry about global clients.  Server is also responsible
539 of creating the Client ID's for their clients.
540
541 Normal server also keeps information about locally created channels and
542 their Channel ID's.
543
544
545 Hence, local list for normal server includes:
546
547 .in 6
548 server list        - Router connection
549    o Server name
550    o Server IP address
551    o Server ID
552    o Sending key
553    o Receiving key
554    o Public key
555
556 client list        - All clients in server
557    o Nickname
558    o Username@host
559    o Real name
560    o Client ID
561    o Sending key
562    o Receiving key
563    o Public key
564
565
566 channel list       - All channels in server
567    o Channel name
568    o Channel ID
569    o Client ID's on channel
570    o Client ID modes on channel
571    o Channel key
572 .in 3
573
574
575 .ti 0
576 3.2.2 Server ID
577
578 Servers are distinguished from other servers by unique 64 bit Server ID 
579 (for IPv4) or 160 bit Server ID (for IPv6).  The Server ID is used in
580 the SILC to route messages to correct servers.  Server ID's also provide
581 information for Client ID's, see section 3.1.1 Client ID.  Server ID is
582 defined as follows.
583
584 .in 6
585 64 bit Server ID based on IPv4 addresses:
586
587 32 bit  IP address of the server
588 16 bit  Port
589 16 bit  Random number
590
591 160 bit Server ID based on IPv6 addresses:
592
593 128 bit  IP address of the server
594  16 bit  Port
595  16 bit  Random number
596
597 o IP address of the server - This is the real IP address of
598   the server.
599
600 o Port - This is the port the server is bound to.
601
602 o Random number - This is used to further randomize the Server ID.
603
604 .in 3
605 Collisions are not expected to happen in any conditions.  The Server ID
606 is always created by the server itself and server is responsible of
607 distributing it to the router.
608
609
610 .ti 0
611 3.2.3 SILC Server Ports
612
613 The following ports has been assigned by IANA for the SILC protocol:
614
615 .in 10
616 silc            706/tcp    SILC
617 silc            706/udp    SILC
618 .in 3
619
620
621 If there are needs to create new SILC networks in the future the port
622 numbers must be officially assigned by the IANA.
623
624 Server on network above privileged ports (>1023) SHOULD NOT be trusted
625 as they could have been set up by untrusted party.
626
627
628 .ti 0
629 3.3 Router
630
631 Router server in SILC network is responsible for keeping the cell together
632 and routing messages to other servers and to other routers.  Router server
633 is also a normal server thus clients may connect to it as it would be
634 just normal SILC server.
635
636 However, router servers has a lot of important tasks that normal servers
637 do not have.  Router server knows everything about everything in the SILC.
638 They know all clients currently on SILC, all servers and routers and all
639 channels in SILC.  Routers are the only servers in SILC that care about
640 global information and keeping them up to date at all time.  And, this
641 is what they must do.
642
643
644 .ti 0
645 3.3.1 Router's Local ID List
646
647 Router server as well MUST keep local list of connected clients and
648 locally created channels.  However, this list is extended to include all
649 the informations of the entire cell, not just the server itself as for
650 normal servers.
651
652 However, on router this list is a lot smaller since routers do not need
653 to keep information about user's nickname, username and host name and real
654 name since these are not needed by the router.  The router keeps only
655 information that it needs.
656
657
658 Hence, local list for router includes:
659
660 .in 6
661 server list        - All servers in the cell
662    o Server name
663    o Server ID
664    o Router's Server ID
665    o Sending key
666    o Receiving key
667
668 client list        - All clients in the cell
669    o Client ID
670
671
672 channel list       - All channels in the cell
673    o Channel ID
674    o Client ID's on channel
675    o Client ID modes on channel
676    o Channel key
677 .in 3
678
679
680 Note that locally connected clients and other information include all the
681 same information as defined in section section 3.2.1 Server's Local ID
682 List.
683
684
685 .ti 0
686 3.3.2 Router's Global ID List
687
688 Router server MUST also keep global list.  Normal servers do not have
689 global list as they know only about local information.  Global list
690 includes all the clients on SILC, their Client ID's, all created channels
691 and their Channel ID's and all servers and routers on SILC and their
692 Server ID's.  That is said, global list is for global information and the
693 list must not include the local information already on the router's local
694 list.
695
696 Note that the global list does not include information like nicknames,
697 usernames and host names or user's real names.  Router does not need to
698 keep these informations as they are not needed by the router.  This 
699 information is available from the client's server which maybe queried
700 when needed.
701
702 Hence, global list includes:
703
704 .in 6
705 server list        - All servers in SILC
706    o Server name
707    o Server ID
708    o Router's Server ID
709
710 client list        - All clients in SILC
711    o Client ID
712
713 channel list       - All channels in SILC
714    o Channel ID
715    o Client ID's on channel
716    o Client ID modes on channel
717 .in 3
718
719
720
721 .ti 0
722 3.3.3 Router's Server ID
723
724 Router's Server ID's are equivalent to normal Server ID's.  As routers
725 are normal servers as well same types of ID's applies for routers as well.
726 Thus, see section 3.2.2 Server ID.
727
728
729 .ti 0
730 3.4 Channels
731
732 A channel is a named group of one or more clients which will all receive
733 messages addressed to that channel.  The channel is created when first
734 client requests JOIN command to the channel, and the channel ceases to
735 exist when the last client has left it.  When channel exists, any client
736 can reference it using the name of the channel.
737
738 Channel names are unique although the real uniqueness comes from 64 bit
739 Channel ID.  However, channel names are still unique and no two global
740 channels with same name may exist.  The Channel name is a string of
741 maximum length of 256 bytes.  Channel names MUST NOT contain any
742 spaces (`  '), any non-printable ASCII characters, commas (`,') and
743 wildcard characters.
744
745 Channels can have operators that can administrate the channel and
746 operate all of its modes.  The following operators on channel exist on
747 the SILC network.
748
749 .in 6
750 o Channel founder - When channel is created the joining client becomes
751   channel founder.  Channel founder is channel operator with some more
752   privileges.  Basically, channel founder can fully operate the channel
753   and all of its modes.  The privileges are limited only to the
754   particular channel.  There can be only one channel founder per
755   channel. Channel founder supersedes channel operator's privileges.
756
757   Channel founder privileges cannot be removed by any other operator on
758   channel.  When channel founder leaves the channel there is no channel
759   founder on the channel.  However, it is possible to set a mode for
760   the channel which allows the original channel founder to regain the
761   founder privileges even after leaving the channel.  Channel founder
762   also cannot be removed by force from the channel.
763
764 o Channel operator - When client joins to channel that has not existed
765   previously it will become automatically channel operator (and channel
766   founder discussed above).  Channel operator is able administrate the
767   channel, set some modes on channel, remove a badly behaving client
768   from the channel and promote other clients to become channel
769   operator.  The privileges are limited only to the particular channel.
770
771   Normal channel user may be promoted (opped) to channel operator
772   gaining channel operator privileges.  Channel founder or other
773   channel operator may also demote (deop) channel operator to normal
774   channel user.
775 .in 3
776
777
778 .ti 0
779 3.4.1 Channel ID
780
781 Channels are distinguished from other channels by unique Channel ID.
782 The Channel ID is a 64 bit ID (for IPv4) or 160 bit ID (for IPv6), and
783 collisions are not expected to happen in any conditions.  Channel names
784 are just for logical use of channels.  The Channel ID is created by the
785 server where the channel is created.  The Channel ID is defined as
786 follows.
787
788 .in 6
789 64 bit Channel ID based on IPv4 addresses:
790
791 32 bit  Router's Server ID IP address (bits 1-32)
792 16 bit  Router's Server ID port (bits 33-48)
793 16 bit  Random number
794
795 160 bit Channel ID based on IPv6 addresses:
796
797 128 bit  Router's Server ID IP address (bits 1-128)
798  16 bit  Router's Server ID port (bits 129-144)
799  16 bit  Random number
800
801 o Router's Server ID IP address - Indicates the IP address of 
802   the router of the cell where this channel is created.  This is 
803   taken from the router's Server ID.  This way SILC router knows 
804   where this channel resides in the SILC network.
805
806 o Router's Server ID port - Indicates the port of the channel on 
807   the server.  This is taken from the router's Server ID.
808
809 o Random number - To further randomize the Channel ID.  This makes
810   sure that there are no collisions.  This also means that
811   in a cell there can be 2^16 channels.
812 .in 3
813
814
815 .ti 0
816 3.5 Operators
817
818 Operators are normal users with extra privileges to their server or
819 router.  Usually these people are SILC server and router administrators
820 that take care of their own server and clients on them.  The purpose of
821 operators is to administrate the SILC server or router.  However, even
822 an operator with highest privileges is not able to enter invite-only
823 channel, to gain access to the contents of a encrypted and authenticated
824 packets traveling in the SILC network or to gain channel operator
825 privileges on public channels without being promoted.  They have the
826 same privileges as everyone else except they are able to administrate
827 their server or router.
828
829
830 .ti 0
831 3.6 SILC Commands
832
833 Commands are very important part on SILC network especially for client
834 which uses commands to operate on the SILC network.  Commands are used
835 to set nickname, join to channel, change modes and many other things.
836
837 Client usually sends the commands and server replies by sending a reply
838 packet to the command.  Server MAY also send commands usually to serve
839 the original client's request.  Usually server cannot send commands to
840 clients, however there MAY be commands that allow the server to send
841 commands to client.  By default servers MAY send commands only to other
842 servers and routers.
843
844 Note that the command reply is usually sent only after client has sent
845 the command request but server is allowed to send command reply packet
846 to client even if client has not requested the command.  Client MAY
847 choose to ignore the command reply.
848
849 It is expected that some of the commands may be miss-used by clients
850 resulting various problems on the server side.  Every implementation
851 SHOULD assure that commands may not be executed more than once, say,
852 in two (2) seconds.  However, to keep response rate up, allowing for
853 example five (5) commands before limiting is allowed.  It is RECOMMENDED
854 that commands such as SILC_COMMAND_NICK, SILC_COMMAND_JOIN, 
855 SILC_COMMAND_LEAVE and SILC_COMMAND_KILL SHOULD be limited in all cases
856 as they require heavy operations.  This should be sufficient to prevent
857 the miss-use of commands.
858
859 SILC commands are described in [SILC4].
860
861
862 .ti 0
863 3.7 SILC Packets
864
865 Packets are naturally the most important part of the protocol and the
866 packets are what actually makes the protocol.  Packets in SILC network
867 are always encrypted using, usually the shared secret session key
868 or some other key, for example, channel key, when encrypting channel
869 messages.  It is not possible to send packet in SILC network without
870 encryption.  The SILC Packet Protocol is a wide protocol and is described
871 in [SILC2].  This document does not define or describe details of
872 SILC packets.
873
874
875 .ti 0
876 3.8 Packet Encryption
877
878 All packets passed in SILC network MUST be encrypted.  This section
879 defines how packets must be encrypted in the SILC network.  The detailed
880 description of the actual encryption process of the packets are
881 described in [SILC2].
882
883 Client and its server shares secret symmetric session key which is
884 established by the SILC Key Exchange Protocol, described in [SILC3]. 
885 Every packet sent from client to server, with exception of packets for
886 channels, are encrypted with this session key.
887
888 Channels has a channel key that are shared by every client on the channel.
889 However, the channel keys are cell specific thus one cell does not know
890 the channel key of the other cell, even if that key is for same channel.
891 Channel key is also known by the routers and all servers that has clients
892 on the channel.  However, channels MAY have channel private keys that
893 are entirely local setting for the client.  All clients on the channel
894 MUST know the channel private key before hand to be able to talk on the
895 channel.  In this case, no server or router know the key for channel.
896
897 Server shares secret symmetric session key with router which is
898 established by the SILC Key Exchange Protocol.  Every packet passed from
899 server to router, with exception of packets for channels, are encrypted
900 with the shared session key.  Same way, router server shares secret
901 symmetric key with its primary route.  However, every packet passed
902 from router to other router, including packets for channels, are
903 encrypted with the shared session key.  Every router connection has
904 their own session keys.
905
906
907 .ti 0
908 3.8.1 Determination of the Source and the Destination
909
910 The source and the destination of the packet needs to be determined
911 to be able to route the packets to correct receiver.  This information
912 is available in the SILC Packet Header which is included in all packets
913 sent in SILC network.  The SILC Packet Header is described in [SILC2].
914
915 The header MUST be encrypted with the session key who is next receiver
916 of the packet along the route.  The receiver of the packet, for example
917 a router along the route, is able to determine the sender and the
918 destination of the packet by decrypting the SILC Packet Header and
919 checking the ID's attached to the header.  The ID's in the header will
920 tell to where the packet needs to be sent and where it is coming from.
921
922 The header in the packet MUST NOT change during the routing of the
923 packet.  The original sender, for example client, assembles the packet
924 and the packet header and server or router between the sender and the
925 receiver MUST NOT change the packet header.  Note however, that some
926 packets such as commands may resent by a server to serve the client's
927 original command.  In this case the command packet send by the server
928 includes the server's IDs.
929
930 Note that the packet and the packet header may be encrypted with
931 different keys.  For example, packets to channels are encrypted with
932 the channel key, however, the header is encrypted with the session key
933 as described above.  However, the header and the packet may be encrypted
934 with same key.  This is the case, for example, with command packets.
935
936
937 .ti 0
938 3.8.2 Client To Client
939
940 The process of message delivery and encryption from client to another
941 client is as follows.
942
943 Example:  Private message from client to another client on different
944           servers.  Clients do not share private message delivery
945           keys; normal session keys are used.
946
947 o Client 1. sends encrypted packet to its server.  The packet is
948   encrypted with the session key shared between client and its
949   server.
950
951 o Server determines the destination of the packet and decrypts
952   the packet.  Server encrypts the packet with session key shared
953   between the server and its router, and sends the packet to the
954   router.
955
956 o Router determines the destination of the packet and decrypts
957   the packet.  Router encrypts the packet with session key 
958   shared between the router and the destination server, and sends
959   the packet to the server.
960
961 o Server determines the client to which the packet is destined
962   to and decrypts the packet.  Server encrypts the packet with
963   session key shared between the server and the destination client,
964   and sends the packet to the client.
965
966 o Client 2. decrypts the packet.
967
968
969 Example:  Private message from client to another client on different
970           servers.  Clients has established secret shared private
971           message delivery key with each other and that is used in 
972           the message encryption.
973
974 o Client 1. sends encrypted packet to its server.  The packet header
975   is encrypted with the session key shared between the client and
976   server, and the private message is encrypted with the private
977   message delivery key shared between clients.
978
979 o Server determines the destination of the packet and sends the 
980   packet to the router.
981
982 o Router determines the destination of the packet and sends the
983   packet to the server.
984
985 o Server determines the client to which the packet is destined
986   to and sends the packet to the client.
987
988 o Client 2. decrypts the packet with the secret shared key.
989
990
991 If clients share secret key with each other the private message
992 delivery is much simpler since servers and routers between the
993 clients do not need to decrypt and re-encrypt the packet.
994
995 The process for clients on same server is much simpler as there are
996 no need to send the packet to the router.  The process for clients 
997 on different cells is same as above except that the packet is routed 
998 outside the cell.  The router of the destination cell routes the 
999 packet to the destination same way as described above.
1000
1001
1002 .ti 0
1003 3.8.3 Client To Channel
1004
1005 Process of message delivery from client on channel to all the clients
1006 on the channel.
1007
1008 Example:  Channel of four users; two on same server, other two on
1009           different cells.  Client sends message to the channel.
1010
1011 o Client 1. encrypts the packet with channel key and sends the
1012   packet to its server.
1013
1014 o Server determines local clients on the channel and sends the
1015   packet to the Client on the same server.  Server then sends
1016   the packet to its router for further routing.
1017
1018 o Router determines local clients on the channel, if found
1019   sends packet to the local clients.  Router determines global
1020   clients on the channel and sends the packet to its primary
1021   router or fastest route.
1022
1023 o (Other router(s) do the same thing and sends the packet to
1024    the server(s))
1025
1026 o Server determines local clients on the channel and sends the
1027   packet to the client.
1028
1029 o All clients receiving the packet decrypts the packet.
1030
1031
1032 .ti 0
1033 3.8.4 Server To Server
1034
1035 Server to server packet delivery and encryption is described in above
1036 examples. Router to router packet delivery is analogous to server to
1037 server.  However, some packets, such as channel packets, are processed
1038 differently.  These cases are described later in this document and
1039 more in detail in [SILC2].
1040
1041
1042 .ti 0
1043 3.9 Key Exchange And Authentication
1044
1045 Key exchange is done always when for example client connects to server
1046 but also when server and router, and router and router connects to each
1047 other.  The purpose of key exchange protocol is to provide secure key
1048 material to be used in the communication.  The key material is used to
1049 derive various security parameters used to secure SILC packets.  The
1050 SILC Key Exchange protocol is described in detail in [SILC3].
1051
1052 Authentication is done after key exchange protocol has been successfully
1053 completed.  The purpose of authentication is to authenticate for example
1054 client connecting to the server.  However, usually clients are accepted
1055 to connect to server without explicit authentication.  Servers are
1056 required use authentication protocol when connecting.  The authentication
1057 may be based on passphrase (pre-shared-secret) or public key.  All
1058 passphrases sent in SILC protocol MUST be UTF-8 [RFC2279] encoded.
1059 The connection authentication protocol is described in detail in [SILC3].
1060
1061
1062 .ti 0
1063 3.9.1 Authentication Payload
1064
1065 Authentication payload is used separately from the SKE and the Connection
1066 Authentication protocol.  It can be used during the session to authenticate
1067 with the remote.  For example, the client can authenticate itself to the
1068 server to become server operator.  In this case, Authentication Payload is
1069 used.
1070
1071 The format of the Authentication Payload is as follows:
1072
1073
1074 .in 5
1075 .nf
1076                      1                   2                   3
1077  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1078 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1079 |        Payload Length         |     Authentication Method     |
1080 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1081 |      Public Data Length       |                               |
1082 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1083 |                                                               |
1084 ~                           Public Data                         ~
1085 |                                                               |
1086 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1087 |   Authentication Data Length  |                               |
1088 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1089 |                                                               |
1090 ~                       Authentication Data                     ~
1091 |                                                               |
1092 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1093 .in 3
1094  
1095 .ce
1096 Figure 5:  Authentication Payload
1097
1098
1099 .in 6
1100 o Payload Length (2 bytes) - Length of the entire payload.
1101
1102 o Authentication Method (2 bytes) - The method of the
1103   authentication.  The authentication methods are defined
1104   in [SILC2] in the Connection Auth Request Payload.  The NONE 
1105   authentication method SHOULD NOT be used.
1106
1107 o Public Data Length (2 bytes) - Indicates the length of
1108   the Public Data field.
1109
1110 o Public Data (variable length) - This is defined only if
1111   the authentication method is public key.  If it is any other
1112   this field MAY include a random data for padding purposes.
1113   However, in this case the field MUST be ignored by the
1114   receiver.
1115
1116   When the authentication method is public key this includes
1117   128 to 4096 bytes of non-zero random data that is used in
1118   the signature process, described subsequently.
1119
1120 o Authentication Data Length (2 bytes) - Indicates the
1121   length of the Authentication Data field.  If zero (0)
1122   value is found in this field the payload MUST be 
1123   discarded.
1124
1125 o Authentication Data (variable length) - Authentication 
1126   method dependent authentication data.
1127 .in 3
1128
1129
1130 If the authentication method is password based, the Authentication
1131 Data field includes the plaintext UTF-8 encoded password.  It is safe
1132 to send plaintext password since the entire payload is encrypted.  In
1133 this case the Public Data Length is set to zero (0), but MAY also include
1134 random data for padding purposes.  It is also RECOMMENDED that maximum
1135 amount of padding is applied to SILC packet when using password based
1136 authentication.  This way it is not possible to approximate the length
1137 of the password from the encrypted packet.
1138
1139 If the authentication method is public key based (or certificate)
1140 the Authentication Data is computed as follows:
1141
1142   HASH = hash(random bytes | ID | public key (or certificate));
1143   Authentication Data = sign(HASH);
1144
1145 The hash() and the sign() are the hash function and the public key
1146 cryptography function selected in the SKE protocol.  The public key
1147 is SILC style public key unless certificates are used.  The ID is the
1148 entity's ID (Client or Server ID) which is authenticating itself.  The
1149 ID encoding is described in [SILC2].  The random bytes are non-zero
1150 random bytes of length between 128 and 4096 bytes, and will be included
1151 into the Public Data field as is.
1152
1153 The receiver will compute the signature using the random data received
1154 in the payload, the ID associated to the connection and the public key
1155 (or certificate) received in the SKE protocol.  After computing the
1156 receiver MUST verify the signature.  In case of public key authentication
1157 this payload is also encrypted.
1158
1159
1160 .ti 0
1161 3.10 Algorithms
1162
1163 This section defines all the allowed algorithms that can be used in
1164 the SILC protocol.  This includes mandatory cipher, mandatory public
1165 key algorithm and MAC algorithms.
1166
1167
1168 .ti 0
1169 3.10.1 Ciphers
1170
1171 Cipher is the encryption algorithm that is used to protect the data
1172 in the SILC packets.  See [SILC2] of the actual encryption process and
1173 definition of how it must be done.  SILC has a mandatory algorithm that
1174 must be supported in order to be compliant with this protocol.
1175
1176 The following ciphers are defined in SILC protocol:
1177
1178 .in 6
1179 aes-256-cbc         AES in CBC mode, 256 bit key       (REQUIRED)
1180 aes-192-cbc         AES in CBC mode, 192 bit key       (OPTIONAL)
1181 aes-128-cbc         AES in CBC mode, 128 bit key       (OPTIONAL)
1182 twofish-256-cbc     Twofish in CBC mode, 256 bit key   (OPTIONAL)
1183 twofish-192-cbc     Twofish in CBC mode, 192 bit key   (OPTIONAL)
1184 twofish-128-cbc     Twofish in CBC mode, 128 bit key   (OPTIONAL)
1185 blowfish-128-cbc    Blowfish in CBC mode, 128 bit key  (OPTIONAL)
1186 cast-256-cbc        CAST-256 in CBC mode, 256 bit key  (OPTIONAL)
1187 cast-192-cbc        CAST-256 in CBC mode, 192 bit key  (OPTIONAL)
1188 cast-128-cbc        CAST-256 in CBC mode, 128 bit key  (OPTIONAL)
1189 rc6-256-cbc         RC6 in CBC mode, 256 bit key       (OPTIONAL)
1190 rc6-192-cbc         RC6 in CBC mode, 192 bit key       (OPTIONAL)
1191 rc6-128-cbc         RC6 in CBC mode, 128 bit key       (OPTIONAL)
1192 mars-256-cbc        Mars in CBC mode, 256 bit key      (OPTIONAL)
1193 mars-192-cbc        Mars in CBC mode, 192 bit key      (OPTIONAL)
1194 mars-128-cbc        Mars in CBC mode, 128 bit key      (OPTIONAL)
1195 none                No encryption                      (OPTIONAL)
1196 .in 3
1197
1198
1199 Algorithm none does not perform any encryption process at all and 
1200 thus is not recommended to be used.  It is recommended that no client
1201 or server implementation would accept none algorithms except in special
1202 debugging mode.
1203
1204 Additional ciphers MAY be defined to be used in SILC by using the
1205 same name format as above.
1206
1207
1208 .ti 0
1209 3.10.2 Public Key Algorithms
1210
1211 Public keys are used in SILC to authenticate entities in SILC network
1212 and to perform other tasks related to public key cryptography.  The 
1213 public keys are also used in the SILC Key Exchange protocol [SILC3].
1214
1215 The following public key algorithms are defined in SILC protocol:
1216
1217 .in 6
1218 rsa        RSA  (REQUIRED)
1219 dss        DSS  (OPTIONAL)
1220 .in 3
1221
1222 DSS is described in [Menezes].  The RSA MUST be implemented according
1223 PKCS #1 [PKCS1].  The mandatory PKCS #1 implementation in SILC MUST be
1224 compliant to either PKCS #1 version 1.5 or newer with the following
1225 notes: The signature encoding is always in same format as the encryption
1226 encoding regardless of the PKCS #1 version.  The signature with appendix
1227 (with hash algorithm OID in the data) MUST NOT be used in the SILC.  The
1228 rationale for this is that there is no binding between the PKCS #1 OIDs
1229 and the hash algorithms used in the SILC protocol.  Hence, the encoding
1230 is always in PKCS #1 version 1.5 format.
1231
1232 Additional public key algorithms MAY be defined to be used in SILC.
1233
1234
1235 .ti 0
1236 3.10.3 Hash Functions
1237
1238 Hash functions are used as part of MAC algorithms defined in the next
1239 section.  They are also used in the SILC Key Exchange protocol defined
1240 in the [SILC3].
1241
1242 The following Hash algorithm are defined in SILC protocol:
1243
1244 .in 6
1245 sha1             SHA-1, length = 20      (REQUIRED)
1246 md5              MD5, length = 16        (OPTIONAL)
1247 .in 3
1248
1249
1250 .ti 0
1251 3.10.4 MAC Algorithms
1252
1253 Data integrity is protected by computing a message authentication code
1254 (MAC) of the packet data.  See [SILC2] for details how to compute the
1255 MAC.
1256
1257 The following MAC algorithms are defined in SILC protocol:
1258
1259 .in 6
1260 hmac-sha1-96     HMAC-SHA1, length = 12  (REQUIRED)
1261 hmac-md5-96      HMAC-MD5, length = 12   (OPTIONAL)
1262 hmac-sha1        HMAC-SHA1, length = 20  (OPTIONAL)
1263 hmac-md5         HMAC-MD5, length = 16   (OPTIONAL)
1264 none             No MAC                  (OPTIONAL)
1265 .in 3
1266
1267 The none MAC is not recommended to be used as the packet is not
1268 authenticated when MAC is not computed.  It is recommended that no
1269 client or server would accept none MAC except in special debugging
1270 mode.
1271
1272 The HMAC algorithm is described in [HMAC] and hash algorithms that
1273 are used as part of the HMACs are described in [Scheneir] and in
1274 [Menezes]
1275
1276 Additional MAC algorithms MAY be defined to be used in SILC.
1277
1278
1279
1280
1281 .ti 0
1282 3.10.5 Compression Algorithms
1283
1284 SILC protocol supports compression that may be applied to unencrypted
1285 data.  It is recommended to use compression on slow links as it may
1286 significantly speed up the data transmission.  By default, SILC does not
1287 use compression which is the mode that must be supported by all SILC
1288 implementations.
1289
1290 The following compression algorithms are defined:
1291
1292 .in 6
1293 none        No compression               (REQUIRED)
1294 zlib        GNU ZLIB (LZ77) compression  (OPTIONAL)
1295 .in 3
1296
1297 Additional compression algorithms MAY be defined to be used in SILC.
1298
1299
1300 .ti 0
1301 3.11 SILC Public Key
1302
1303 This section defines the type and format of the SILC public key.  All
1304 implementations MUST support this public key type.  See [SILC3] for
1305 other optional public key and certificate types allowed in the SILC
1306 protocol.  Public keys in SILC may be used to authenticate entities
1307 and to perform other tasks related to public key cryptography.
1308
1309 The format of the SILC Public Key is as follows:
1310
1311
1312 .in 5
1313 .nf
1314                      1                   2                   3
1315  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1317 |                        Public Key Length                      |
1318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1319 |     Algorithm Name Length     |                               |
1320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1321 |                                                               |
1322 ~                         Algorithm Name                        ~
1323 |                                                               |
1324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1325 |       Identifier Length       |                               |
1326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1327 |                                                               |
1328 ~                           Identifier                          ~
1329 |                                                               |
1330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1331 |                                                               |
1332 ~                           Public Data                         ~
1333 |                                                               |
1334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1335 .in 3
1336
1337 .ce
1338 Figure 5:  SILC Public Key
1339
1340
1341 .in 6
1342 o Public Key Length (4 bytes) - Indicates the full length
1343   of the public key, not including this field.
1344
1345 o Algorithm Name Length (2 bytes) - Indicates the length
1346   of the Algorithm Length field, not including this field.
1347
1348 o Algorithm name (variable length) - Indicates the name
1349   of the public key algorithm that the key is.  See the
1350   section 3.10.2 Public Key Algorithms for defined names.
1351
1352 o Identifier Length (2 bytes) - Indicates the length of
1353   the Identifier field, not including this field.
1354
1355 o Identifier (variable length) - Indicates the identifier
1356   of the public key.  This data can be used to identify
1357   the owner of the key.  The identifier is of the following
1358   format:
1359
1360      UN   User name
1361      HN   Host name or IP address
1362      RN   Real name
1363      E    EMail address
1364      O    Organization
1365      C    Country
1366
1367
1368   Examples of an identifier:
1369
1370     `UN=priikone, HN=poseidon.pspt.fi, E=priikone@poseidon.pspt.fi'
1371
1372     `UN=sam, HN=dummy.fi, RN=Sammy Sam, O=Company XYZ, C=Finland'
1373
1374   At least user name (UN) and host name (HN) MUST be provided as
1375   identifier.  The fields are separated by commas (`,').  If
1376   comma is in the identifier string it must be written as `\\,',
1377   for example, `O=Company XYZ\\, Inc.'.
1378
1379 o Public Data (variable length) - Includes the actual
1380   public data of the public key.
1381
1382   The format of this field for RSA algorithm is
1383   as follows:
1384
1385      4 bytes            Length of e
1386      variable length    e
1387      4 bytes            Length of n
1388      variable length    n
1389
1390
1391   The format of this field for DSS algorithm is
1392   as follows:
1393
1394      4 bytes            Length of p
1395      variable length    p
1396      4 bytes            Length of q
1397      variable length    q
1398      4 bytes            Length of g
1399      variable length    g
1400      4 bytes            Length of y
1401      variable length    y
1402
1403   The variable length fields are multiple precession
1404   integers encoded as strings in both examples.
1405
1406   Other algorithms must define their own type of this
1407   field if they are used.
1408 .in 3
1409
1410 All fields in the public key are in MSB (most significant byte first)
1411 order.
1412
1413
1414 .ti 0
1415 3.12 SILC Version Detection
1416
1417 The version detection of both client and server is performed at the
1418 connection phase while executing the SILC Key Exchange protocol.  The
1419 version identifier is exchanged between initiator and responder.  The
1420 version identifier is of the following format:
1421
1422 .in 6
1423 SILC-<protocol version>-<software version>
1424 .in 3
1425
1426 The version strings are of the following format:
1427
1428 .in 6
1429 protocol version = <major>.<minor>
1430 software version = <major>[.<minor>[.<build or vendor string>]]
1431 .in 3
1432
1433 Protocol version MAY provide both major and minor version.  Currently
1434 implementations MUST set the protocol version and accept at least the 
1435 protocol version as SILC-1.1-<software version>.  If new protocol version 
1436 causes incompatibilities with older version the <minor> version number 
1437 MUST be incremented.  The <major> is incremented if new protocol version 
1438 is fully incompatible.
1439
1440 Software version MAY provide major, minor and build (vendor) version.
1441 The software version MAY be freely set and accepted.  The version string 
1442 MUST consist of printable US-ASCII characters.
1443
1444
1445 Thus, the version strings could be, for example:
1446
1447 .in 6
1448 SILC-1.1-2.0.2
1449 SILC-1.0-1.2
1450 SILC-1.1-1.0.VendorXYZ
1451 SILC-1.1-2.4.5 Vendor Limited
1452 .in 3
1453
1454
1455 .ti 0
1456 3.13 Backup Routers
1457
1458 Backup routers may exist in the cell in addition of the primary router.
1459 However, they must not be active routers and act as routers in the cell.
1460 Only one router may be acting as primary router in the cell.  In the case
1461 of failure of the primary router may one of the backup routers become
1462 active.  The purpose of backup routers are in case of failure of the
1463 primary router to maintain working connections inside the cell and outside
1464 the cell and to avoid netsplits.
1465
1466 Backup routers are normal servers in the cell that are prepared to take
1467 over the tasks of the primary router if needed.  They need to have at
1468 least one direct and active connection to the primary router of the cell.
1469 This communication channel is used to send the router information to
1470 the backup router.  When the backup router connects to the primary router
1471 of the cell it MUST present itself as router server in the Connection
1472 Authentication protocol, even though it is normal server as long as the
1473 primary router is available.  Reason for this is that the configuration
1474 needed in the responder end requires usually router connection level
1475 configuration.  The responder, however must understand and treat the
1476 connection as normal server (except when feeding router level data to
1477 the backup router).
1478
1479 Backup router must know everything that the primary router knows to be
1480 able to take over the tasks of the primary router.  It is the primary
1481 router's responsibility to feed the data to the backup router.  If the
1482 backup router does not know all the data in the case of failure some
1483 connections may be lost.  The primary router of the cell must consider
1484 the backup router being actual router server when it feeds the data to
1485 it.
1486
1487 In addition of having direct connection to the primary router of the
1488 cell, the backup router must also have connection to the same router
1489 the primary router of the cell is connected.  However, it must not be
1490 active router connection meaning that the backup router must not use
1491 that channel as its primary route and it must not notify the router
1492 about having connected servers, channels and clients behind it.  It
1493 merely connects to the router.  This sort of connection is later
1494 referred as being passive connection.  Some keepalive actions may be
1495 needed by the router to keep the connection alive.
1496
1497 It is required that other normal servers have passive connections to
1498 the backup router(s) in the cell.  Some keepalive actions may be needed
1499 by the server to keep the connection alive.  After they notice the
1500 failure of the primary router they must start using the connection to
1501 the first backup router as their primary route.
1502
1503 Also, if any other router in the network is using the cell's primary
1504 router as its own primary router, it must also have passive connection
1505 to the cell's backup router.  It too is prepared to switch to use the
1506 backup router as its new primary router as soon as the orignal primary
1507 router becomes unresponsive.
1508
1509 All of the parties of this protocol knows which one is the backup router
1510 of the cell from their local configuration.  Each of the entity must
1511 be configured accordingly and care must be taken when configuring the
1512 backup routers, servers and other routers in the network.
1513
1514 It must be noted that some of the channel messages and private messages
1515 may be lost during the switch to the backup router.  The announcements
1516 assures that the state of the network is not lost during the switch.
1517
1518 It is RECOMMENDED that there would be at least one backup router in
1519 the cell.  It is NOT RECOMMENDED to have all servers in the cell acting
1520 as backup routers as it requires establishing several connections to
1521 several servers in the cell.  Large cells can easily have several
1522 backup routers in the cell.
1523
1524 The order of the backup routers are decided at the configuration phase.
1525 All the parties of this protocol must be configured accordingly to 
1526 understand the order of the backup routers.  It is not required that
1527 the backup server is actually active server in the cell.  Backup router
1528 may be a spare server in the cell that does not accept normal client
1529 connections at all.  It may be reserved purely for the backup purposes.
1530 These, however, are cell management issues.
1531
1532 If also the first backup router is down as well and there is another
1533 backup router in the cell then it will start acting as the primary
1534 router as described above.
1535
1536
1537 .ti 0
1538 3.13.1 Switching to Backup Router
1539
1540 When the primary router of the cell becomes unresponsive, for example
1541 by sending EOF to the connection, all the parties of this protocol MUST
1542 replace the old connection to the primary router with first configured
1543 backup router.  The backup router usually needs to do local modifications
1544 to its database in order to update all the information needed to maintain
1545 working routes.  The backup router must understand that clients that
1546 were orignated from the primary router are now originated from some of
1547 the existing server connections and must update them accordingly.  It
1548 must also remove those clients that were owned by the primary router
1549 since those connections were lost when the primary router became
1550 unresponsive.
1551
1552 All the other parties of the protocol must also update their local
1553 database to understand that the route to the primary router will now go
1554 to the backup router.
1555
1556 The servers connected to the backup router must announce their clients,
1557 channels, channel users, channel user modes and channel modes to the
1558 backup router.  This is to assure that none of the important notify 
1559 packets were lost during the switch to the backup router.  The backup
1560 router must check which of these announced entities it already have
1561 and distribute the new ones to the primary route.
1562
1563 The backup router too must announce its servers, clients, channels
1564 and other information to the new primary router.  The primary router
1565 of the backup router too must announce its informations to the backup
1566 router.  Both must process only the ones they do not know about.  If
1567 any of the announced modes does not match then they are enforced in
1568 normal manner defined later in this specification.
1569
1570
1571 .ti 0
1572 3.13.2 Resuming Primary Router
1573
1574 Usually the primary router is unresponsive only a short period of time
1575 and it is intended that the original router of the cell will reassume
1576 its position as primary router when it comes back online.  The backup
1577 router that is now acting as primary router of the cell must constantly
1578 try to connect to the original primary router of the cell.  It is
1579 RECOMMENDED that it would try to reconnect in 30 second intervals to
1580 the primary router.
1581
1582 When the connection is established to the primary router the backup
1583 resuming protocol is executed.  The protocol is advanced as follows:
1584
1585   1. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
1586      value 1 the primary router that came back online.  The packet
1587      will indicate the primary router has been replaced by the backup
1588      router.  After sending the packet the backup router will announce
1589      all of its channels, channel users, modes etc. to the primary
1590      router.
1591
1592   2. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
1593      value 2 to its current primary router to indicate that it will
1594      resign as being primary router.  Then, backup router sends the
1595      SILC_PACKET_RESUME_ROUTER packet with type value 1 to all
1596      connected servers to also indicate that it will resign as being
1597      primary router.
1598
1599   3. Backup router also send SILC_PACKET_RESUME_ROUTER packet with
1600      type value 2 to the router that is using the backup router
1601      currently as its primary router.
1602
1603   4. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
1604      with type value 1 or 2 must reconnect immediately to the
1605      primary router of the cell that came back online.  After they
1606      have created the connection they MUST NOT use that connection
1607      as active primary route but still route all packets to the
1608      backup router.  After the connection is created they MUST send
1609      SILC_PACKET_RESUME_ROUTER with type value 3 back to the
1610      backup router.  The session ID value found in the first packet
1611      MUST be set in this packet.
1612
1613   5. Backup router MUST wait for all packets with type value 3 before
1614      it continues with the protocol.  It knows from the session ID values
1615      set in the packet when it have received all packets.  The session
1616      value should be different in all packets it have send earlier.
1617      After the packets is received the backup router sends the
1618      SILC_PACKET_RESUME_ROUTER packet with type value 4 to the
1619      primary router that came back online.  This packet will indicate 
1620      that the backup router is now ready to resign as being primary
1621      router.  The session ID value in this packet MUST be the same as
1622      in first packet sent to the primary router.  During this time
1623      the backup router should still route all packets it is receiving
1624      from server connections.
1625
1626   6. The primary router receives the packet and send the
1627      SILC_PACKET_RESUME_ROUTER with type value 5 to all connected servers
1628      including the backup router.  It also sends the packet with type
1629      value 6 to its primary router, and to the router that is using
1630      it as its primary router.  The Session ID value in this packet
1631      SHOULD be zero (0).
1632
1633   7. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
1634      with type value 5 or 6 must switch their primary route to the
1635      new primary router and remove the route for the backup router, since
1636      it is not anymore the primary router of the cell.  They must also
1637      update their local database to understand that the clients are
1638      not originated from the backup router but from the locally connected
1639      servers.  After that they MUST announce their channels, channel
1640      users, modes etc. to the primary router.  They must not use the
1641      backup router connection after this and the connection is considered
1642      to be passive connection.  The implementations SHOULD be able
1643      to disable the connection without closing the actual link.
1644
1645 After this protocol is executed the backup router is now again normal
1646 server in the cell that has the backup link to the primary router.  The
1647 primary router feeds the router specific data again to the backup router.
1648 All server connections in the backup router are considered passive
1649 connections.
1650
1651 When the primary router of the cell comes back online and connects
1652 to its primary router, the remote primary router must send the 
1653 SILC_PACKET_RESUME_ROUTER with type value 20 indicating that the
1654 connection is not allowed since the router has been replaced by an
1655 backup router.  The session ID value in this packet SHOULD be zero (0).
1656 When the router receives this packet it must not use the connection
1657 as active connection but to understand that it cannot act as primary
1658 router in the cell.  It must wait that the backup router connects to
1659 it, and the backup resuming protocol is executed.
1660
1661 The following type values has been defined for SILC_PACKET_RESUME_ROUTER
1662 packet:
1663
1664   1    SILC_SERVER_BACKUP_START
1665   2    SILC_SERVER_BACKUP_START_GLOBAL
1666   3    SILC_SERVER_BACKUP_START_CONNECTED
1667   4    SILC_SERVER_BACKUP_START_ENDING
1668   5    SILC_SERVER_BACKUP_START_RESUMED
1669   6    SILC_SERVER_BACKUP_START_GLOBAL
1670   20   SILC_SERVER_BACKUP_START_REPLACED
1671
1672 If any other value is found in the type field the packet must be 
1673 discarded.  The SILC_PACKET_RESUME_ROUTER packet and its payload
1674 is defined in [SILC2].
1675
1676
1677 .ti 0
1678 3.13.3 Discussion on Backup Router Scheme
1679
1680 It is clear that this backup router support is not able to handle all
1681 possible situations arrising in unreliable network environment.  This
1682 scheme for example does not handle situation when the router actually
1683 does not go offline but the network link goes down temporarily.  It would
1684 require some intelligence to figure out when it is best time to switch
1685 to the backup router.  To make it even more complicated it is possible
1686 that the backup router may have not lost the network link to the primary
1687 router.
1688
1689 Other possible situation is when the network link is lost temporarily
1690 between two primary routers in the SILC network.  Unless the routers
1691 notice the link going down they cannot perhaps find alternative routes.
1692 Worst situation is when the link goes down only for a short period of
1693 time, thus causing lag.  Should the routers or servers find alternative
1694 routes if they cannot get response from the router during the lag?
1695 When alternative routes are being found it must be careful not to
1696 mess up existing primary routes between routers in the network.
1697
1698 It is suggested that the current backup router scheme is only temporary
1699 solution and existing backup router protocols are studied further.  It
1700 is also suggested that the backup router specification will be separated
1701 from this SILC specification Internet-Draft and additional specification
1702 is written on the subject.
1703
1704
1705 .ti 0
1706 4 SILC Procedures
1707
1708 This section describes various SILC procedures such as how the 
1709 connections are created and registered, how channels are created and
1710 so on.  The section describes the procedures only generally as details
1711 are described in [SILC2] and [SILC3].
1712
1713
1714 .ti 0
1715 4.1 Creating Client Connection
1716
1717 This section describes the procedure when client connects to SILC server.
1718 When client connects to server the server MUST perform IP address lookup
1719 and reverse IP address lookup to assure that the origin host really is
1720 who it claims to be.  Client, host, connecting to server SHOULD have 
1721 both valid IP address and fully qualified domain name (FQDN).
1722
1723 After that the client and server performs SILC Key Exchange protocol
1724 which will provide the key material used later in the communication.
1725 The key exchange protocol MUST be completed successfully before the
1726 connection registration may continue.  The SILC Key Exchange protocol
1727 is described in [SILC3].
1728
1729 Typical server implementation would keep a list of connections that it
1730 allows to connect to the server.  The implementation would check, for
1731 example, the connecting client's IP address from the connection list
1732 before the SILC Key Exchange protocol has been started.  Reason for
1733 this is that if the host is not allowed to connect to the server there
1734 is no reason to perform the key exchange protocol.
1735
1736 After successful key exchange protocol the client and server performs
1737 connection authentication protocol.  The purpose of the protocol is to
1738 authenticate the client connecting to the server.  Flexible
1739 implementation could also accept the client to connect to the server
1740 without explicit authentication.  However, if authentication is
1741 desired for a specific client it may be based on passphrase or
1742 public key authentication.  If authentication fails the connection
1743 MUST be terminated.  The connection authentication protocol is described
1744 in [SILC3].
1745
1746 After successful key exchange and authentication protocol the client
1747 registers itself by sending SILC_PACKET_NEW_CLIENT packet to the
1748 server.  This packet includes various information about the client
1749 that the server uses to create the client.  Server creates the client
1750 and sends SILC_PACKET_NEW_ID to the client which includes the created
1751 Client ID that the client MUST start using after that.  After that
1752 all SILC packets from the client MUST have the Client ID as the
1753 Source ID in the SILC Packet Header, described in [SILC2].
1754
1755 Client MUST also get the server's Server ID that is to be used as
1756 Destination ID in the SILC Packet Header when communicating with
1757 the server (for example when sending commands to the server).  The
1758 ID may be resolved in two ways.  Client can take the ID from an
1759 previously received packet from server that MUST include the ID,
1760 or to send SILC_COMMAND_INFO command and receive the Server ID as
1761 command reply.
1762
1763 Server MAY choose not to use the information received in the
1764 SILC_PACKET_NEW_CLIENT packet.  For example, if public key or 
1765 certificate were used in the authentication, server MAY use those
1766 informations rather than what it received from client.  This is suitable
1767 way to get the true information about client if it is available.
1768
1769 The nickname of client is initially set to the username sent in the
1770 SILC_PACKET_NEW_CLIENT packet.  User should set the nickname to more
1771 suitable by sending SILC_COMMAND_NICK command.  However, this is not
1772 required as part of registration process.
1773
1774 Server MUST also distribute the information about newly registered
1775 client to its router (or if the server is router, to all routers in
1776 the SILC network).  More information about this in [SILC2].
1777
1778
1779 .ti 0
1780 4.2 Creating Server Connection
1781
1782 This section describes the procedure when server connects to its
1783 router (or when router connects to other router, the cases are
1784 equivalent).  The procedure is very much alike when client connects
1785 to the server thus it is not repeated here.
1786
1787 One difference is that server MUST perform connection authentication
1788 protocol with proper authentication.  A proper authentication is based
1789 on passphrase or public key authentication.
1790
1791 After server and router has successfully performed the key exchange
1792 and connection authentication protocol, the server register itself
1793 to the router by sending SILC_PACKET_NEW_SERVER packet.  This packet
1794 includes the server's Server ID that it has created by itself and
1795 other relevant information about the server.
1796
1797 After router has received the SILC_PACKET_NEW_SERVER packet it
1798 distributes the information about newly registered server to all routers
1799 in the SILC network.  More information about this in [SILC2].
1800
1801 As client needed to resolve the destination ID this MUST be done by the
1802 server that connected to the router, as well.  The way to resolve it is
1803 to get the ID from previously received packet.  The server MAY also 
1804 use SILC_COMMAND_INFO command to resolve the ID.  Server MUST also start
1805 using its own Server ID as Source ID in SILC Packet Header and the
1806 router's Server ID as Destination when communicating with the router.
1807
1808
1809 .ti 0
1810 4.2.1 Announcing Clients, Channels and Servers
1811
1812 After server or router has connected to the remote router, and it already
1813 has connected clients and channels it MUST announce them to the router.
1814 If the server is router server, also all the local servers in the cell
1815 MUST be announced.
1816
1817 All clients are announced by compiling a list of ID Payloads into the
1818 SILC_PACKET_NEW_ID packet.  All channels are announced by compiling a
1819 list of Channel Payloads into the SILC_PACKET_NEW_CHANNEL packet.  Also, 
1820 the channel users on the channels must be announced by compiling a
1821 list of Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into
1822 the SILC_PACKET_NOTIFY packet.  The users' modes on the channel must 
1823 also be announced by compiling list of Notify Payloads with the 
1824 SILC_NOTIFY_TYPE_CUMODE_CHANGE notify type into the SILC_PACKET_NOTIFY
1825 packet.
1826
1827 The router MUST also announce the local servers by compiling list of
1828 ID Payloads into the SILC_PACKET_NEW_ID packet.
1829
1830 Also, clients' modes (user modes in SILC) MUST be announced.  This is
1831 done by compiling a list of Notify Payloads with the 
1832 SILC_NOTIFY_UMODE_CHANGE nofity type into the SILC_PACKET_NOTIFY packet.
1833
1834 Also, channel's topics MUST be announced by compiling a list of Notify
1835 Payloads with the SILC_NOTIFY_TOPIC_SET notify type into the
1836 SILC_PACKET_NOTIFY packet.
1837
1838 The router which receives these lists MUST process them and broadcast
1839 the packets to its primary route.
1840
1841 When processing the announced channels and channel users the router MUST
1842 check whether a channel exists already with the same name.  If channel
1843 exists with the same name it MUST check whether the Channel ID is
1844 different.  If the Channel ID is different the router MUST send the notify
1845 type SILC_NOTIFY_TYPE_CHANNEL_CHANGE to the server to force the channel ID
1846 change to the ID the router has.  If the mode of the channel is different
1847 the router MUST send the notify type SILC_NOTIFY_TYPE_CMODE_CHANGE to the
1848 server to force the mode change to the mode that the router has.
1849
1850 The router MUST also generate new channel key and distribute it to the
1851 channel.  The key MUST NOT be generated if the SILC_CMODE_PRIVKEY mode
1852 is set.
1853
1854 If the channel has channel founder on the router the router MUST send
1855 the notify type SILC_NOTIFY_TYPE_CUMODE_CHANGE to the server to force
1856 the mode change for the channel founder on the server.  The channel 
1857 founder privileges MUST be removed.
1858
1859 The router processing the channels MUST also compile a list of
1860 Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into the
1861 SILC_PACKET_NOTIFY and send the packet to the server.  This way the
1862 server (or router) will receive the clients on the channel that
1863 the router has.
1864
1865
1866 .ti 0
1867 4.3 Joining to a Channel
1868
1869 This section describes the procedure when client joins to a channel.
1870 Client joins to channel by sending command SILC_COMMAND_JOIN to the
1871 server.  If the receiver receiving join command is normal server the
1872 server MUST check its local list whether this channel already exists
1873 locally.  This would indicate that some client connected to the server
1874 has already joined to the channel.  If this is case the client is
1875 joined to the channel, new channel key is created and information about
1876 newly joined channel is sent to the router.  The router is informed
1877 by sending SILC_NOTIFY_TYPE_JOIN notify type.  The notify type MUST
1878 also be sent to the local clients on the channel.  The new channel key
1879 is also sent to the router and to local clients on the channel.
1880
1881 If the channel does not exist in the local list the client's command
1882 MUST be sent to the router which will then perform the actual joining
1883 procedure.  When server receives the reply to the command from the
1884 router it MUST be sent to the client which sent the command originally.
1885 Server will also receive the channel key from the server that it MUST
1886 send to the client which originally requested the join command.  The
1887 server MUST also save the channel key.
1888
1889 If the receiver of the join command is router it MUST first check its
1890 local list whether anyone in the cell has already joined to the channel.
1891 If this is the case the client is joined to the channel and reply is
1892 sent to the client.  If the command was sent by server the command reply
1893 is sent to the server which sent it.  Then the router MUST also create
1894 new channel key and distribute it to all clients on the channel and
1895 all servers that has clients on the channel.  Router MUST also send
1896 the SILC_NOTIFY_TYPE_JOIN notify type to local clients on the channel
1897 and to local servers that has clients on the channel.
1898
1899 If the channel does not exist on the router's local list it MUST
1900 check the global list whether the channel exists at all.  If it does
1901 the client is joined to the channel as described previously.  If
1902 the channel does not exist the channel is created and the client
1903 is joined to the channel.  The channel key is also created and
1904 distributed as previously described.  The client joining to the created
1905 channel is made automatically channel founder and both channel founder
1906 and channel operator privileges is set for the client.
1907
1908 If the router created the channel in the process, information about the
1909 new channel MUST be broadcasted to all routers.  This is done by 
1910 broadcasting SILC_PACKET_NEW_CHANNEL packet to the router's primary
1911 route.  When the router joins the client to the channel it MUST also
1912 send information about newly joined client to all routers in the SILC
1913 network.  This is done by broadcasting the SILC_NOTIFY_TYPE_JOIN notify
1914 type to the router's primary route. 
1915
1916 It is important to note that new channel key is created always when
1917 new client joins to channel, whether the channel has existed previously
1918 or not.  This way the new client on the channel is not able to decrypt
1919 any of the old traffic on the channel.  Client which receives the reply to
1920 the join command MUST start using the received Channel ID in the channel
1921 message communication thereafter.  Client also receives the key for the
1922 channel in the command reply.  Note that the channel key is never
1923 generated if the SILC_CMODE_PRIVKEY mode is set.
1924
1925
1926 .ti 0
1927 4.4 Channel Key Generation
1928
1929 Channel keys are created by router which creates the channel by taking
1930 enough randomness from cryptographically strong random number generator.
1931 The key is generated always when channel is created, when new client
1932 joins a channel and after the key has expired.  Key could expire for
1933 example in an hour.
1934
1935 The key MUST also be re-generated whenever some client leaves a channel.
1936 In this case the key is created from scratch by taking enough randomness
1937 from the random number generator.  After that the key is distributed to
1938 all clients on the channel.  However, channel keys are cell specific thus
1939 the key is created only on the cell where the client, which left the
1940 channel, exists.  While the server or router is creating the new channel
1941 key, no other client may join to the channel.  Messages that are sent
1942 while creating the new key are still processed with the old key.  After
1943 server has sent the SILC_PACKET_CHANNEL_KEY packet MUST client start
1944 using the new key.  If server creates the new key the server MUST also
1945 send the new key to its router.  See [SILC2] on more information about
1946 how channel messages must be encrypted and decrypted when router is
1947 processing them.
1948
1949 When client receives the SILC_PACKET_CHANNEL_KEY packet with the
1950 Channel Key Payload it MUST process the key data to create encryption
1951 and decryption key, and to create the HMAC key that is used to compute
1952 the MACs of the channel messages.  The processing is as follows:
1953
1954   channel_key  = raw key data
1955   HMAC key     = hash(raw key data)
1956
1957 The raw key data is the key data received in the Channel Key Payload.
1958 The hash() function is the hash function used in the HMAC of the channel.
1959 Note that the server MUST also save the channel key.
1960
1961
1962 .ti 0
1963 4.5 Private Message Sending and Reception
1964
1965 Private messages are sent point to point.  Client explicitly destines
1966 a private message to specific client that is delivered to only to that
1967 client.  No other client may receive the private message.  The receiver
1968 of the private message is destined in the SILC Packet Header as any
1969 other packet as well.
1970
1971 If the sender of a private message does not know the receiver's Client
1972 ID, it MUST resolve it from server.  There are two ways to resolve the
1973 client ID from server; it is RECOMMENDED that client implementations
1974 send SILC_COMMAND_IDENTIFY command to receive the Client ID.  Client
1975 MAY also send SILC_COMMAND_WHOIS command to receive the Client ID.
1976 If the sender has received earlier a private message from the receiver
1977 it should have cached the Client ID from the SILC Packet Header.
1978
1979 If server receives a private message packet which includes invalid
1980 destionation Client ID the server MUST send SILC_NOTIFY_TYPE_ERROR
1981 notify to the client with error status indicating that such Client ID
1982 does not exist.
1983
1984 See [SILC2] for description of private message encryption and decryption
1985 process.
1986
1987
1988 .ti 0
1989 4.6 Private Message Key Generation
1990
1991 Private message MAY be protected by the key generated by the client.
1992 The key may be generated and sent to the other client by sending packet
1993 SILC_PACKET_PRIVATE_MESSAGE_KEY which travels through the network
1994 and is secured by session keys.  After that the private message key
1995 is used in the private message communication between those clients.
1996
1997 Other choice is to entirely use keys that are not sent through
1998 the SILC network at all.  This significantly adds security.  This key
1999 would be pre-shared-key that is known by both of the clients.  Both
2000 agree about using the key and starts sending packets that indicate
2001 that the private message is secured using private message key.
2002
2003 The key material used as private message key is implementation issue.
2004 However, SILC_PACKET_KEY_AGREEMENT packet MAY be used to negotiate
2005 the key material.  If the key is normal pre-shared-key or randomly
2006 generated key, and the SILC_PACKET_KEY_AGREEMENT was not used, then
2007 the key material SHOULD be processed as defined in the [SILC3].  In
2008 the processing, however, the HASH, as defined in [SILC3] MUST be 
2009 ignored.  After processing the key material it is employed as defined
2010 in [SILC3], however, the HMAC key material MUST be discarded.
2011
2012 If the key is pre-shared-key or randomly generated the implementations
2013 SHOULD use the SILC protocol's mandatory cipher as the cipher.  If the
2014 SKE was used to negotiate key material the cipher was negotiated as well,
2015 and may be different from default cipher.
2016
2017
2018 .ti 0
2019 4.7 Channel Message Sending and Reception
2020
2021 Channel messages are delivered to group of users.  The group forms a
2022 channel and all clients on the channel receives messages sent to the
2023 channel.
2024
2025 Channel messages are destined to channel by specifying the Channel ID
2026 as Destination ID in the SILC Packet Header.  The server MUST then
2027 distribute the message to all clients on the channel by sending the
2028 channel message destined explicitly to a client on the channel.
2029
2030 If server receives a channel message packet which includes invalid
2031 destionation Channel ID the server MUST send SILC_NOTIFY_TYPE_ERROR
2032 notify to the sender with error status indicating that such Channel ID
2033 does not exist.
2034
2035 See the [SILC2] for description of channel messege routing for router
2036 servers, and channel message encryption and decryption process.
2037
2038
2039 .ti 0
2040 4.8 Session Key Regeneration
2041
2042 Session keys MUST be regenerated periodically, say, once in an hour.
2043 The re-key process is started by sending SILC_PACKET_REKEY packet to
2044 other end, to indicate that re-key must be performed.  The initiator
2045 of the connection SHOULD initiate the re-key.
2046
2047 If perfect forward secrecy (PFS) flag was selected in the SILC Key
2048 Exchange protocol [SILC3] the re-key MUST cause new key exchange with
2049 SKE protocol.  In this case the protocol is secured with the old key
2050 and the protocol results to new key material.  See [SILC3] for more
2051 information.  After the SILC_PACKET_REKEY packet is sent the sender
2052 will perform the SKE protocol.
2053
2054 If PFS flag was set the resulted key material is processed as described
2055 in the section Processing the Key Material in [SILC3].  The difference
2056 with re-key in the processing is that the initial data for the hash 
2057 function is just the resulted key material and not the HASH as it
2058 is not computed at all with re-key.  Other than that, the key processing
2059 it equivalent to normal SKE negotiation.
2060
2061 If PFS flag was not set, which is the default case, then re-key is done
2062 without executing SKE protocol.  In this case, the new key is created by
2063 providing the current sending encryption key to the SKE protocol's key
2064 processing function.  The process is described in the section Processing
2065 the Key Material in [SILC3].  The difference in the processing is that
2066 the initial data for the hash function is the current sending encryption
2067 key and not the SKE's KEY and HASH values.  Other than that, the key
2068 processing is equivalent to normal SKE negotiation.
2069
2070 After both parties has regenerated the session key, both MUST send
2071 SILC_PACKET_REKEY_DONE packet to each other.  These packets are still
2072 secured with the old key.  After these packets, the subsequent packets
2073 MUST be protected with the new key.
2074
2075
2076 .ti 0
2077 4.9 Command Sending and Reception
2078
2079 Client usually sends the commands in the SILC network.  In this case
2080 the client simply sends the command packet to server and the server
2081 processes it and replies with command reply packet.  See the [SILC3]
2082 for detailed description of all commands.
2083
2084 However, if the server is not able to process the command, it is sent 
2085 to the server's router.  This is case for example with commands such
2086 as, SILC_COMMAND_JOIN and SILC_COMMAND_WHOIS commands.  However, there
2087 are other commands as well.  For example, if client sends the WHOIS
2088 command requesting specific information about some client the server must
2089 send the WHOIS command to router so that all clients in SILC network
2090 are searched.  The router, on the other hand, sends the WHOIS command
2091 further to receive the exact information about the requested client.
2092 The WHOIS command travels all the way to the server which owns the client
2093 and it replies with command reply packet.  Finally, the server which
2094 sent the command receives the command reply and it must be able to
2095 determine which client sent the original command.  The server then
2096 sends command reply to the client.  Implementations should have some
2097 kind of cache to handle, for example, WHOIS information.  Servers
2098 and routers along the route could all cache the information for faster
2099 referencing in the future.
2100
2101 The commands sent by server may be sent hop by hop until someone is able
2102 to process the command.  However, it is preferred to destine the command
2103 as precisely as it is possible.  In this case, other routers en route
2104 MUST route the command packet by checking the true sender and true
2105 destination of the packet.  However, servers and routers MUST NOT route
2106 command reply packets to clients coming from other server.  Client
2107 MUST NOT accept command reply packet originated from anyone else but
2108 from its own server.
2109
2110
2111 .ti 0
2112 4.10 Closing Connection
2113
2114 When remote client connection is closed the server MUST send the notify
2115 type SILC_NOTIFY_TYPE_SIGNOFF to its primary router and to all channels
2116 the client was joined.  The server MUST also save the client's information
2117 for a period of time for history purposes.
2118
2119 When remote server or router connection is closed the server or router
2120 MUST also remove all the clients that was behind the server or router
2121 from the SILC Network.  The server or router MUST also send the notify
2122 type SILC_NOTIFY_TYPE_SERVER_SIGNOFF to its primary router and to all
2123 local clients that are joined on the same channels with the remote 
2124 server's or router's clients.
2125
2126
2127 .ti 0
2128 4.11 Detaching and Resuming a Session
2129
2130 SILC protocol provides a possibility for a client to detach itself from
2131 the network without actually signing off from the network.  The client
2132 connection to the server is closed but the client remains as valid client
2133 in the network.  The client may then later resume its session back from
2134 any server in the network.
2135
2136 When client wishes to detach from the network it MUST send the
2137 SILC_COMMAND_DETACH command to its server.  The server then MUST set
2138 SILC_UMODE_DETACHED mode to the client and send SILC_NOTIFY_UMODE_CHANGE
2139 notify to its primary router, which will then MUST broadcast it further
2140 to other routers in the network.  This user mode indicates that the
2141 client is detached from the network.  Implementations MUST NOT use
2142 the SILC_UMODE_DETACHED flag to determine whether a packet can be sent
2143 to the client.  All packets MUST still be sent to the client even if
2144 client is detached from the network.  Only the server that originally
2145 had the active client connection is able to make the decision after it
2146 notices that the network connection is not active.  In this case the
2147 default case is to discard the packet.
2148
2149 The SILC_UMODE_DETACHED flag cannot be set by client itself directly
2150 with SILC_COMMAND_UMODE command, but only implicitly by sending the
2151 SILC_COMMAND_DETACH command.  The flag also cannot be unset by the
2152 client, server or router with SILC_COMMAND_UMODE command, but only
2153 implicitly by sending and receiving the SILC_PACKET_RESUME_CLIENT
2154 packet.
2155
2156 When the client wishes to resume its session in the SILC Network it
2157 connects to a server in the network, which MAY also be a different
2158 from the original server, and performs normal procedures regarding
2159 creating a connection as described in section 4.1.  After the SKE
2160 and the Connection Authentication protocols has been successfully
2161 completed the client MUST NOT send SILC_PACKET_NEW_CLIENT packet, but
2162 MUST send SILC_PACKET_RESUME_CLIENT packet.  This packet is used to
2163 perform the resuming procedure.  The packet MUST include the detached
2164 client's Client ID, which the client must know.  It also includes
2165 Authentication Payload which includes signature made with the client's
2166 private key.  The signature is computed as defined in the section
2167 3.9.1.  Thus, the authentication method MUST be based in public key
2168 authentication.
2169
2170 When server receives the SILC_PACKET_RESUME_CLIENT packet it MUST
2171 do the following:  Server checks that the Client ID is valid client
2172 and that it has the SILC_UMODE_DETACHED mode set.  Then it verifies
2173 the Authentication Payload with the detached client's public key.
2174 If it does not have the public key it retrieves it by sending
2175 SILC_COMMAND_GETKEY command to the server that has the public key from
2176 the original client connection.  The server MUST NOT use the public
2177 key received in the SKE protocol for this connection.  If the
2178 signature is valid the server unsets the SILC_UMODE_DETACHED flag,
2179 and sends the SILC_PACKET_RESUME_CLIENT packet to its primary router.
2180 The routers MUST broadcast the packet and unset the SILC_UMODE_DETACHED
2181 flag when the packet is received.  If the server is router server it
2182 also MUST send the SILC_PACKET_RESUME_CLIENT packet to the original
2183 server whom owned the detached client.
2184
2185 The servers and routers that receives the SILC_PACKET_RESUME_CLIENT
2186 packet MUST know whether the packet already has been received for
2187 the client.  It is protocol error to attempt to resume the client
2188 session from more than one server.  The implementations could set
2189 internal flag that indicates that the client is resumed.  If router
2190 receive SILC_PACKET_RESUME_CLIENT packet for client that is already
2191 resumed the client MUST be killed from the network.  This would
2192 indicate that the client is attempting to resume the session more
2193 than once which is protocol error.  In this case the router sends
2194 SILC_NOTIFY_TYPE_KILLED to the client.  All routers that detect
2195 the same situation MUST also send the notify for the client.
2196
2197 The servers and routers that receive the SILC_PACKET_RESUME_CLIENT
2198 must also understand that the client may not be found behind the
2199 same server that it originally came from.  They must update their
2200 caches according this.  The server that now owns the client session
2201 MUST check whether the Client ID of the resumed client is based
2202 on the server's Server ID.  If it is not it creates a new Client
2203 ID and send SILC_NOTIFY_TYPE_NICK_CHANGE to the network.  It MUST
2204 also send the channel keys of all channels that the client is
2205 joined to the client since it does not have them.  Whether the
2206 Client ID was changed or not the server MUST send SILC_PACKET_NEW_ID
2207 packet to the client.  Only after this the client is resumed back
2208 to the network and may start sending packets and messages.
2209
2210 It is also possible that the server does not know about the channels
2211 that the client has joined.  In this case it join the client internally
2212 to the channels, generate new channel keys and distribute the keys
2213 to the channels as described in section 4.4.
2214
2215 It is implementation issue for how long servers keep detached client
2216 sessions.  It is RECOMMENDED that the detached sessions would be
2217 persistent as long as the server is running.
2218
2219
2220 .ti 0
2221 5 Security Considerations
2222
2223 Security is central to the design of this protocol, and these security
2224 considerations permeate the specification.  Common security considerations
2225 such as keeping private keys truly private and using adequate lengths for
2226 symmetric and asymmetric keys must be followed in order to maintain the
2227 security of this protocol.
2228
2229 Special attention must also be paid on the servers and routers that are
2230 running the SILC service.  The SILC protocol's security depends greatly
2231 on the security and the integrity of the servers and administrators that
2232 are running the service.  It is recommended that some form of registration
2233 is required by the server and router administrator prior acceptance to
2234 the SILC Network.  Even though, the SILC protocol is secure in a network
2235 of mutual distrust between clients, servers, routers and adminstrators
2236 of the servers, the client should be able to trust the servers they are
2237 using if they whish to do so.
2238
2239 It however must be noted that if the client requires absolute security
2240 by not trusting any of the servers or routers in the SILC Network, it can
2241 be accomplished by negotiating private keys outside the SILC Network,
2242 either using SKE or some other key exchange protocol, or to use some
2243 other external means for distributing the keys.  This applies for all 
2244 messages, private messages and channel messages.
2245
2246 It is important to note that SILC, like any other security protocol is
2247 not full proof system and cannot secure from insecure environment; the
2248 SILC servers and routers could very well be compromised.  However, to
2249 provide acceptable level of security and usability for end user the
2250 protocol use many times session keys or other keys generated by the
2251 servers to secure the messages.  This is intentional design feature to
2252 allow ease of use for end user.  This way the network is still usable,
2253 and remains encrypted even if the external means of distributing the
2254 keys is not working.  The implementation, however, may like to not
2255 follow this design feature, and always negotiate the keys outside SILC
2256 network.  This is acceptable solution and many times recommended.  The
2257 implementation still must be able to work with the server generated keys.
2258
2259 If this is unacceptable for the client or end user, the private keys
2260 negotiatied outside the SILC Network should always be used.  In the end
2261 it is always implementor's choice whether to negotiate private keys by
2262 default or whether to use the keys generated by the servers.
2263
2264 It is also recommended that router operators in the SILC Network would
2265 form a joint forum to discuss the router and SILC Network management
2266 issues.  Also, router operators along with the cell's server operators
2267 should have a forum to discuss the cell management issues.
2268
2269
2270 .ti 0
2271 6 References
2272
2273 [SILC2]      Riikonen, P., "SILC Packet Protocol", Internet Draft,
2274              April 2001.
2275
2276 [SILC3]      Riikonen, P., "SILC Key Exchange and Authentication 
2277              Protocols", Internet Draft, April 2001.
2278
2279 [SILC4]      Riikonen, P., "SILC Commands", Internet Draft, April 2001.
2280
2281 [IRC]        Oikarinen, J., and Reed D., "Internet Relay Chat Protocol",
2282              RFC 1459, May 1993.
2283
2284 [IRC-ARCH]   Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,
2285              April 2000.
2286
2287 [IRC-CHAN]   Kalt, C., "Internet Relay Chat: Channel Management", RFC
2288              2811, April 2000.
2289
2290 [IRC-CLIENT] Kalt, C., "Internet Relay Chat: Client Protocol", RFC
2291              2812, April 2000.
2292
2293 [IRC-SERVER] Kalt, C., "Internet Relay Chat: Server Protocol", RFC
2294              2813, April 2000.
2295
2296 [SSH-TRANS]  Ylonen, T., et al, "SSH Transport Layer Protocol", 
2297              Internet Draft.
2298
2299 [PGP]        Callas, J., et al, "OpenPGP Message Format", RFC 2440,
2300              November 1998.
2301
2302 [SPKI]       Ellison C., et al, "SPKI Certificate Theory", RFC 2693,
2303              September 1999.
2304
2305 [PKIX-Part1] Housley, R., et al, "Internet X.509 Public Key 
2306              Infrastructure, Certificate and CRL Profile", RFC 2459,
2307              January 1999.
2308
2309 [Schneier]   Schneier, B., "Applied Cryptography Second Edition",
2310              John Wiley & Sons, New York, NY, 1996.
2311
2312 [Menezes]    Menezes, A., et al, "Handbook of Applied Cryptography",
2313              CRC Press 1997.
2314
2315 [OAKLEY]     Orman, H., "The OAKLEY Key Determination Protocol",
2316              RFC 2412, November 1998.
2317
2318 [ISAKMP]     Maughan D., et al, "Internet Security Association and
2319              Key Management Protocol (ISAKMP)", RFC 2408, November
2320              1998.
2321
2322 [IKE]        Harkins D., and Carrel D., "The Internet Key Exchange
2323              (IKE)", RFC 2409, November 1998.
2324
2325 [HMAC]       Krawczyk, H., "HMAC: Keyed-Hashing for Message
2326              Authentication", RFC 2104, February 1997.
2327
2328 [PKCS1]      Kalinski, B., and Staddon, J., "PKCS #1 RSA Cryptography
2329              Specifications, Version 2.0", RFC 2437, October 1998.
2330
2331 [RFC2119]    Bradner, S., "Key Words for use in RFCs to Indicate
2332              Requirement Levels", BCP 14, RFC 2119, March 1997.
2333
2334 [RFC2279]    Yergeau, F., "UTF-8, a transformation format of ISO
2335              10646", RFC 2279, January 1998.
2336
2337
2338
2339 .ti 0
2340 7 Author's Address
2341
2342 .nf
2343 Pekka Riikonen
2344 Snellmanninkatu 34 A 15
2345 70100 Kuopio
2346 Finland
2347
2348 EMail: priikone@iki.fi
2349
2350 This Internet-Draft expires XXX