updates.
[silc.git] / doc / draft-riikonen-silc-ke-auth-05.nroff
1 .pl 10.0i
2 .po 0
3 .ll 7.2i
4 .lt 7.2i
5 .nr LL 7.2i
6 .nr LT 7.2i
7 .ds LF Riikonen
8 .ds RF FORMFEED[Page %]
9 .ds CF
10 .ds LH Internet-Draft
11 .ds RH XXX
12 .ds CH
13 .na
14 .hy 0
15 .in 0
16 .nf
17 Network Working Group                                        P. Riikonen
18 Internet-Draft
19 draft-riikonen-silc-ke-auth-05.txt                      XXX
20 Expires: XXX
21
22 .in 3
23
24 .ce 2
25 SILC Key Exchange and Authentication Protocols
26 <draft-riikonen-silc-ke-auth-05.txt>
27
28 .ti 0
29 Status of this Memo
30
31 This document is an Internet-Draft and is in full conformance with
32 all provisions of Section 10 of RFC 2026.  Internet-Drafts are
33 working documents of the Internet Engineering Task Force (IETF), its
34 areas, and its working groups.  Note that other groups may also
35 distribute working documents as Internet-Drafts.
36
37 Internet-Drafts are draft documents valid for a maximum of six months
38 and may be updated, replaced, or obsoleted by other documents at any
39 time.  It is inappropriate to use Internet-Drafts as reference
40 material or to cite them other than as "work in progress."
41
42 The list of current Internet-Drafts can be accessed at
43 http://www.ietf.org/ietf/1id-abstracts.txt
44
45 The list of Internet-Draft Shadow Directories can be accessed at
46 http://www.ietf.org/shadow.html
47
48 The distribution of this memo is unlimited.
49
50
51 .ti 0
52 Abstract
53
54 This memo describes two protocols used in the Secure Internet Live
55 Conferencing (SILC) protocol, specified in the Secure Internet Live
56 Conferencing, Protocol Specification internet-draft [SILC1].  The
57 SILC Key Exchange (SKE) protocol provides secure key exchange between
58 two parties resulting into shared secret key material.  The protocol
59 is based on Diffie-Hellman key exchange algorithm and its functionality
60 is derived from several key exchange protocols.  SKE uses best parts
61 of the SSH2 Key Exchange protocol, Station-To-Station (STS) protocol
62 and the OAKLEY Key Determination protocol [OAKLEY].
63
64 The SILC Connection Authentication protocol provides user level
65 authentication used when creating connections in SILC network.  The
66 protocol is transparent to the authentication data which means that it
67 can be used to authenticate the user with, for example, passphrase
68 (pre-shared-secret) or public key (and certificate).
69
70
71
72 .ti 0
73 Table of Contents
74
75 .nf
76 1 Introduction ..................................................  2
77   1.1 Requirements Terminology ..................................  3
78 2 SILC Key Exchange Protocol ....................................  3
79   2.1 Key Exchange Payloads .....................................  4
80       2.1.1 Key Exchange Start Payload ..........................  4
81       2.1.2 Key Exchange Payload ................................  8
82   2.2 Key Exchange Procedure .................................... 10
83   2.3 Processing the Key Material ............................... 12
84   2.4 SILC Key Exchange Groups .................................. 13
85       2.4.1 diffie-hellman-group1 ............................... 14
86       2.4.2 diffie-hellman-group2 ............................... 14
87   2.5 Key Exchange Status Types ................................. 15
88 3 SILC Connection Authentication Protocol ....................... 16
89   3.1 Connection Auth Payload ................................... 18
90   3.2 Connection Authentication Types ........................... 19
91       3.2.1 Passphrase Authentication ........................... 19
92       3.2.2 Public Key Authentication ........................... 19
93   3.3 Connection Authentication Status Types .................... 20
94 4 Security Considerations ....................................... 20
95 5 References .................................................... 20
96 6 Author's Address .............................................. 22
97
98
99 .ti 0
100 List of Figures
101
102 .nf
103 Figure 1:  Key Exchange Start Payload
104 Figure 2:  Key Exchange Payload
105 Figure 3:  Connection Auth Payload
106
107
108 .ti 0
109 1 Introduction
110
111 This memo describes two protocols used in the Secure Internet Live
112 Conferencing (SILC) protocol specified in the Secure Internet Live
113 Conferencing, Protocol Specification Internet-Draft [SILC1].  The
114 SILC Key Exchange (SKE) protocol provides secure key exchange between
115 two parties resulting into shared secret key material.  The protocol
116 is based on Diffie-Hellman key exchange algorithm and its functionality
117 is derived from several key exchange protocols.  SKE uses best parts
118 of the SSH2 Key Exchange protocol, Station-To-Station (STS) protocol
119 and the OAKLEY Key Determination protocol.
120
121 The SILC Connection Authentication protocol provides user level
122 authentication used when creating connections in SILC network.  The
123 protocol is transparent to the authentication data which means that it
124 can be used to authenticate the user with, for example, pass phrase
125 (pre-shared- secret) or public key (and certificate).
126
127 The basis of secure SILC session requires strong and secure key exchange
128 protocol and authentication.  The authentication protocol is entirely
129 secured and no authentication data is ever sent in the network without
130 encrypting and authenticating it first.  Thus, authentication protocol
131 may be used only after the key exchange protocol has been successfully
132 completed.
133
134 This document refers constantly to other SILC protocol specification
135 Internet Drafts that are a must read for those who wants to understand
136 the function of these protocols.  The most important references are
137 the Secure Internet Live Conferencing, Protocol Specification [SILC1]
138 and the SILC Packet Protocol [SILC2] Internet Drafts.
139
140 The protocol is intended to be used with the SILC protocol thus it
141 does not define own framework that could be used.  The framework is
142 provided by the SILC protocol.
143
144
145 .ti 0
146 1.1 Requirements Terminology
147
148 The keywords MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, 
149 MAY, and OPTIONAL, when they appear in this document, are to be
150 interpreted as described in [RFC2119].
151
152
153 .ti 0
154 2 SILC Key Exchange Protocol
155
156 SILC Key Exchange Protocol (SKE) is used to exchange shared secret
157 between connecting entities.  The result of this protocol is a key
158 material used to secure the communication channel.  The protocol uses
159 Diffie-Hellman key exchange algorithm and its functionality is derived
160 from several key exchange protocols.  SKE uses best parts of the SSH2
161 Key Exchange protocol, Station-To-Station (STS) protocol and the OAKLEY
162 Key Determination protocol.  The protocol does not claim any conformance
163 to any of these protocols, they were merely used as a reference when
164 designing this protocol.
165
166 The purpose of SILC Key Exchange protocol is to create session keys to
167 be used in current SILC session.  The keys are valid only for some period
168 of time (usually an hour) or at most until the session ends.  These keys
169 are used to protect packets like commands, command replies and other
170 communication between two entities.  If connection is server to router
171 connection, the keys are used to protect all traffic between those
172 servers.  In client connections usually all the packets are protected
173 with this key except channel messages; channels has their own keys and 
174 they are not exchanged with this protocol.
175
176 The Diffie-Hellman implementation used in the SILC SHOULD be compliant
177 to the PKCS #3.
178
179
180 .ti 0
181 2.1 Key Exchange Payloads
182
183 During the key exchange procedure public data is sent between initiator
184 and responder.  This data is later used in the key exchange procedure.
185 There are several payloads used in the key exchange.  As for all SILC
186 packets, SILC Packet Header, described in [SILC2], is at the start of
187 all packets. The same is done with these payloads as well.  All the
188 fields in the payloads are always in MSB (most significant byte first)
189 order.  Following descriptions of these payloads.
190
191
192 .ti 0
193 2.1.1 Key Exchange Start Payload
194
195 The key exchange between two entities MUST be started by sending the
196 SILC_PACKET_KEY_EXCHANGE packet containing Key Exchange Start Payload.
197 Initiator sends the Key Exchange Start Payload to the responder filled
198 with all security properties it supports.  The responder then checks
199 whether it supports the security properties.
200
201 It then sends a Key Exchange Start Payload to the initiator filled with
202 security properties it selected from the original payload.  The payload
203 sent by responder MUST include only one chosen property per list.  The
204 character encoding for the security property values as defined in [SILC1] 
205 SHOULD be UTF-8 [RFC2279].
206
207 The Key Exchange Start Payload is used to tell connecting entities what
208 security properties and algorithms should be used in the communication.
209 The Key Exchange Start Payload is sent only once per session.  Even if
210 the PFS (Perfect Forward Secrecy) flag is set the Key Exchange Start
211 Payload is not re-sent.  When PFS is desired the Key Exchange Payloads
212 are sent to negotiate new key material.  The procedure is equivalent to
213 the very first negotiation except that the Key Exchange Start Payload
214 is not sent.
215
216 As this payload is used only with the very first key exchange the payload
217 is never encrypted, as there are no keys to encrypt it with.
218
219 A cookie is also sent in this payload.  A cookie is used to randomize the
220 payload so that none of the key exchange parties can determine this
221 payload before the key exchange procedure starts.  The cookie MUST be
222 returned to the original sender by the responder.
223
224 Following diagram represents the Key Exchange Start Payload.  The lists
225 mentioned below are always comma (`,') separated and the list MUST NOT
226 include spaces (` ').
227
228
229 .in 5
230 .nf
231                      1                   2                   3
232  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
233 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
234 |   RESERVED    |     Flags     |         Payload Length        |
235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
236 |                                                               |
237 +                                                               +  
238 |                                                               |
239 +                            Cookie                             +
240 |                                                               |
241 +                                                               +
242 |                                                               |
243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
244 |     Version String Length     |                               |
245 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
246 |                                                               |
247 ~                         Version String                        ~
248 |                                                               |
249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
250 |   Key Exchange Grp Length     |                               |
251 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
252 |                                                               |
253 ~                      Key Exchange Groups                      ~
254 |                                                               |
255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
256 |        PKCS Alg Length        |                               |
257 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
258 |                                                               |
259 ~                         PKCS Algorithms                       ~
260 |                                                               |
261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
262 |     Encryption Alg Length     |                               |
263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
264 |                                                               |
265 ~                      Encryption Algorithms                    ~
266 |                                                               |
267 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
268 |       Hash Alg Length         |                               |
269 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
270 |                                                               |
271 ~                         Hash Algorithms                       ~
272 |                                                               |
273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
274 |         HMAC Length           |                               |
275 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
276 |                                                               |
277 ~                             HMACs                             ~
278 |                                                               |
279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
280 |    Compression Alg Length     |                               |
281 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
282 |                                                               |
283 ~                     Compression Algorithms                    ~
284 |                                                               |
285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
286 .in 3
287
288 .ce
289 Figure 1:  Key Exchange Start Payload
290
291
292
293 .in 6
294 o RESERVED (1 byte) - Reserved field.  Sender fills this with
295   zero (0) value.
296
297 o Flags (1 byte) - Indicates flags to be used in the key
298   exchange.  Several flags can be set at once by ORing the
299   flags together.  The following flags are reserved for this
300   field:
301
302      No flags                 0x00
303
304        In this case the field is ignored.
305
306      No Reply                 0x01
307
308        If set the receiver of the payload does not reply to 
309        the packet.
310
311      PFS                      0x02
312
313        Perfect Forward Secrecy (PFS) to be used in the
314        key exchange protocol.  If not set, re-keying
315        is performed using the old key.  See the [SILC1]
316        for more information on this issue.  When PFS is
317        used, re-keying and creating new keys for any
318        particular purpose MUST cause new key exchange.
319        In this key exchange only the Key Exchange Payload
320        is sent and the Key Exchange Start Payload MUST
321        NOT be sent.  When doing PFS the Key Exchange
322        Payloads are encrypted with the old keys.
323
324      Mutual Authentication    0x04
325
326        Both of the parties will perform authentication
327        by providing signed data for the other party to
328        verify.  By default, only responder will provide
329        the signature data.  If this is set then the
330        initiator must also provide it.  Initiator MAY
331        set this but also responder MAY set this even if
332        initiator did not set it.
333
334      Rest of the flags are reserved for the future and
335      MUST NOT be set.
336
337 o Payload Length (2 bytes) - Length of the entire Key Exchange
338   Start payload, not including any other field.
339
340 o Cookie (16 bytes) - Cookie that randomize this payload so
341   that each of the party cannot determine the payload before
342   hand.
343
344 o Version String Length (2 bytes) - The length of the Version
345   String field, not including any other field.
346
347 o Version String (variable length) - Indicates the version of
348   the sender of this payload.  Initiator sets this when sending
349   the payload and responder sets this when it replies by sending
350   this payload.  See [SILC1] for definition of the version
351   string format.
352
353 o Key Exchange Grp Length (2 bytes) - The length of the
354   key exchange group list, not including any other field.
355
356 o Key Exchange Group (variable length) - The list of
357   key exchange groups.  See the section 2.4 SILC Key Exchange
358   Groups for definitions of these groups.
359
360 o PKCS Alg Length (2 bytes) - The length of the PKCS algorithms
361   list, not including any other field.
362
363 o PKCS Algorithms (variable length) - The list of PKCS 
364   algorithms.
365
366 o Encryption Alg Length (2 bytes) - The length of the encryption
367   algorithms list, not including any other field.
368
369 o Encryption Algorithms (variable length) - The list of
370   encryption algorithms.
371
372 o Hash Alg Length (2 bytes) - The length of the Hash algorithm
373   list, not including any other field.
374
375 o Hash Algorithms (variable length) - The list of Hash
376   algorithms.  The hash algorithms are mainly used in the
377   SKE protocol.
378
379 o HMAC Length (2 bytes) - The length of the HMAC list, not
380   including any other field.
381
382 o HMACs (variable length) - The list of HMACs.  The HMAC's
383   are used to compute the Message Authentication Codes (MAC)
384   of the SILC packets.
385
386 o Compression Alg Length (2 bytes) - The length of the
387   compression algorithms list, not including any other field.
388
389 o Compression Algorithms (variable length) - The list of 
390   compression algorithms.
391 .in 3
392
393
394 .ti 0
395 2.1.2 Key Exchange Payload
396
397 Key Exchange payload is used to deliver the public key (or certificate),
398 the computed Diffie-Hellman public value and possibly signature data
399 from one party to the other.  When initiator is using this payload
400 and the Mutual Authentication flag is not set then the initiator MUST
401 NOT provide the signature data.  If the flag is set then the initiator
402 MUST provide the signature data so that the responder can verify it.
403
404 The Mutual Authentication flag is usually used when a separate 
405 authentication protocol will not be executed for the initiator of the
406 protocol.  This is case for example when the SKE is performed between
407 two SILC clients.  In normal case, where client is connecting to a
408 server, or server is connecting to a router the Mutual Authentication
409 flag may be omitted.  However, if the connection authentication protocol 
410 for the connecting entity is not based on public key authentication (it
411 is based on passphrase) then the Mutual Authentication flag SHOULD be 
412 enabled.  This way the connecting entity has to provide proof of
413 posession of the private key for the public key it will provide in
414 SILC Key Exchange protocol.
415
416 When performing re-key with PFS selected this is the only payload that
417 is sent in the SKE protocol.  The Key Exchange Start Payload MUST NOT
418 be sent at all.  However, this payload does not have all the fields
419 present.  In the re-key with PFS the public key and a possible signature
420 data SHOULD NOT be present.  If they are present they MUST be ignored.
421 The only field that is present is the Public Data that is used to create
422 the new key material.  In the re-key the Mutual Authentication flag, that
423 may be set in the initial negotiation, MUST also be ignored.
424
425 This payload is sent inside SILC_PACKET_KEY_EXCHANGE_1 and inside
426 SILC_PACKET_KEY_EXCHANGE_2 packet types.  The initiator uses the 
427 SILC_PACKET_KEY_EXCHANGE_1 and the responder the latter.
428
429 The following diagram represent the Key Exchange Payload.
430
431
432 .in 5
433 .nf
434                      1                   2                   3
435  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
437 |       Public Key Length       |        Public Key Type        |
438 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
439 |                                                               |
440 ~            Public Key of the party (or certificate)           ~
441 |                                                               |
442 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
443 |       Public Data Length      |                               |
444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
445 |                                                               |
446 ~                          Public Data                          ~
447 |                                                               |
448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
449 |        Signature Length       |                               |
450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
451 |                                                               |
452 ~                        Signature Data                         ~
453 |                                                               |
454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
455 .in 3
456
457 .ce
458 Figure 2:  Key Exchange Payload
459
460
461 .in 6
462 o Public Key Length (2 bytes) - The length of the Public Key
463   (or certificate) field, not including any other field.
464
465 o Public Key Type (2 bytes) - The public key (or certificate) 
466   type.  This field indicates the type of the public key in 
467   the packet.  Following types are defined:
468
469      1    SILC style public key (mandatory)
470      2    SSH2 style public key (optional)
471      3    X.509 Version 3 certificate (optional)
472      4    OpenPGP certificate (optional)
473      5    SPKI certificate (optional)
474
475   The only required type to support is type number 1.  See 
476   [SILC1] for the SILC public key specification.  See
477   SSH public key specification in [SSH-TRANS].  See X.509v3
478   certificate specification in [PKIX-Part1].  See OpenPGP
479   certificate specification in [PGP].  See SPKI certificate
480   specification in [SPKI].  If this field includes zero (0)
481   or unsupported type number the protocol MUST be aborted
482   sending SILC_PACKET_FAILURE message and the connection SHOULD
483   be closed immediately.
484
485 o Public Key (or certificate) (variable length) - The
486   public key or certificate.
487
488 o Public Data Length (2 bytes) - The length of the Public Data
489   field, not including any other field.
490
491 o Public Data (variable length) - The public data to be
492   sent to the receiver.  See section 2.2 Key Exchange 
493   Procedure for detailed description how this field is
494   computed.  This value is binary encoded.
495
496 o Signature Length (2 bytes) - The length of the signature,
497   not including any other field.
498
499 o Signature Data (variable length) - The signature signed
500   by the sender.  The receiver of this signature MUST
501   verify it.  The verification is done using the sender's
502   public key.  See section 2.2 Key Exchange Procedure for
503   detailed description how to produce the signature.  If
504   the Mutual Authentication flag is not set then initiator
505   MUST NOT provide this field and the Signature Length field
506   MUST be set to zero (0) value.  If the flag is set then
507   also the initiator MUST provide this field.  The responder
508   MUST always provide this field.
509 .in 3
510
511
512 .ti 0
513 2.2 Key Exchange Procedure
514
515 The key exchange begins by sending SILC_PACKET_KEY_EXCHANGE packet with
516 Key Exchange Start Payload to select the security properties to be used
517 in the key exchange and later in the communication.
518
519 After Key Exchange Start Payload has been processed by both of the
520 parties the protocol proceeds as follows:
521
522
523 Setup:  p is a large and public safe prime.  This is one of the
524         Diffie Hellman groups.  q is order of subgroup (largest
525         prime factor of p).  g is a generator and is defined
526         along with the Diffie Hellman group.
527
528     1.  Initiator generates a random number x, where 1 < x < q, 
529         and computes e = g ^ x mod p.  The result e is then 
530         encoded into Key Exchange Payload, with the public key
531         (or certificate) and sent to the responder.
532
533         If the Mutual Authentication flag is set then initiator
534         MUST also produce signature data SIGN_i which the responder
535         will verify.  The initiator MUST compute a hash value
536         HASH_i = hash(Key Exchange Start Payload | public key
537         (or certificate) | e).  It then signs the HASH_i value with
538         its private key resulting a signature SIGN_i.
539
540     2.  Responder generates a random number y, where 1 < y < q,
541         and computes f = g ^ y mod p.  It then computes the
542         shared secret KEY = e ^ y mod p, and, a hash value 
543         HASH = hash(Key Exchange Start Payload data | public 
544         key (or certificate) | Initiator's public key (or
545         certificate) | e | f | KEY).  It then signs
546         the HASH value with its private key resulting a signature
547         SIGN.  
548
549         It then encodes its public key (or certificate), f and 
550         SIGN into Key Exchange Payload and sends it to the 
551         initiator.
552
553         If the Mutual Authentication flag is set then the responder
554         SHOULD verify that the public key provided in the payload
555         is authentic, or if certificates are used it verifies the
556         certificate.  The responder MAY accept the public key without
557         verifying it, however, doing so may result to insecure key
558         exchange (accepting the public key without verifying may be
559         desirable for practical reasons on many environments.  For
560         long term use this is never desirable, in which case
561         certificates would be the preferred method to use).  It then
562         computes the HASH_i value the same way initiator did in the
563         phase 1.  It then verifies the signature SIGN_i from the
564         payload with the hash value HASH_i using the received public
565         key.
566
567     3.  Initiator verifies that the public key provided in
568         the payload is authentic, or if certificates are used
569         it verifies the certificate.  The initiator MAY accept
570         the public key without verifying it, however, doing
571         so may result to insecure key exchange (accepting the
572         public key without verifying may be desirable for 
573         practical reasons on many environments.  For long term
574         use this is never desirable, in which case certificates
575         would be the preferred method to use).
576
577         Initiator then computes the shared secret KEY = 
578         f ^ x mod p, and, a hash value HASH in the same way as
579         responder did in phase 2.  It then verifies the 
580         signature SIGN from the payload with the hash value
581         HASH using the received public key.
582
583
584 If any of these phases is to fail the SILC_PACKET_FAILURE MUST be sent
585 to indicate that the key exchange protocol has failed, and the connection
586 SHOULD be closed immediately.  Any other packets MUST NOT be sent or
587 accepted during the key exchange except the SILC_PACKET_KEY_EXCHANGE_*,
588 SILC_PACKET_FAILURE and SILC_PACKET_SUCCESS packets.
589
590 The result of this protocol is a shared secret key material KEY and
591 a hash value HASH.  The key material itself is not fit to be used as 
592 a key, it needs to be processed further to derive the actual keys to be
593 used.  The key material is also used to produce other security parameters
594 later used in the communication.  See section 2.3 Processing the Key
595 Material for detailed description how to process the key material.
596
597 If the Mutual Authentication flag was set the protocol produces also
598 a hash value HASH_i.  This value, however, must be discarded.
599
600 After the keys are processed the protocol is ended by sending the
601 SILC_PACKET_SUCCESS packet.  Both entities send this packet to 
602 each other.  After this both parties will start using the new keys.
603
604
605 .ti 0
606 2.3 Processing the Key Material
607
608 Key Exchange protocol produces secret shared key material KEY.  This
609 key material is used to derive the actual keys used in the encryption
610 of the communication channel.  The key material is also used to derive
611 other security parameters used in the communication.  Key Exchange
612 protocol produces a hash value HASH as well.
613
614 The keys MUST be derived from the key material as follows:
615
616 .in 6
617 Sending Initial Vector (IV)     = hash(0 | KEY | HASH)
618 Receiving Initial Vector (IV)   = hash(1 | KEY | HASH)
619 Sending Encryption Key          = hash(2 | KEY | HASH)
620 Receiving Encryption Key        = hash(3 | KEY | HASH)
621 Sending HMAC Key                = hash(4 | KEY | HASH)
622 Receiving HMAC Key              = hash(5 | KEY | HASH)
623 .in 3
624
625
626 The Initial Vector (IV) is used in the encryption when doing for
627 example CBC mode.  As many bytes as needed are taken from the start of
628 the hash output for IV.  Sending IV is for sending key and receiving IV
629 is for receiving key.  For receiving party, the receiving IV is actually
630 sender's sending IV, and, the sending IV is actually sender's receiving
631 IV.  Initiator uses IV's as they are (sending IV for sending and
632 receiving IV for receiving).
633
634 The Encryption Keys are derived as well from the hash().  If the hash()
635 output is too short for the encryption algorithm more key material MUST
636 be produced in the following manner:
637
638 .in 6
639 K1 = hash(2 | KEY | HASH)
640 K2 = hash(KEY | HASH | K1)
641 K3 = hash(KEY | HASH | K1 | K2)  ...
642
643 Sending Encryption Key = K1 | K2 | K3 ...
644
645
646 K1 = hash(3 | KEY | HASH)
647 K2 = hash(KEY | HASH | K1)
648 K3 = hash(KEY | HASH | K1 | K2)  ...
649
650 Receiving Encryption Key = K1 | K2 | K3 ...
651 .in 3
652
653
654 The key is distributed by hashing the previous hash with the original
655 key material.  The final key is a concatenation of the hash values.
656 For Receiving Encryption Key the procedure is equivalent.  Sending key
657 is used only for encrypting data to be sent.  The receiving key is used
658 only to decrypt received data.  For receiving party, the receive key is
659 actually sender's sending key, and, the sending key is actually sender's
660 receiving key.  Initiator uses generated keys as they are (sending key
661 for sending and receiving key for receiving).
662
663 The HMAC keys are used to create MAC values to packets in the
664 communication channel.  As many bytes as needed are taken from the start
665 of the hash output to generate the MAC keys.
666
667 These procedures are performed by all parties of the key exchange
668 protocol.  This MUST be done before the protocol has been ended by
669 sending the SILC_PACKET_SUCCESS packet.
670
671 This same procedure is used in the SILC in some other circumstances
672 as well.  Any changes to this procedure is mentioned separately when
673 this procedure is needed.  See the [SILC1] and the [SILC2] for these
674 circumstances.
675
676
677 .ti 0
678 2.4 SILC Key Exchange Groups
679
680 The Following groups may be used in the SILC Key Exchange protocol.
681 The first group diffie-hellman-group1 is REQUIRED, other groups MAY be 
682 negotiated to be used in the connection with Key Exchange Start Payload
683 and SILC_PACKET_KEY_EXCHANGE packet.  However, the first group MUST be
684 proposed in the Key Exchange Start Payload regardless of any other
685 requested group (however, it does not have to be the first in the list).
686
687
688 .ti 0
689 2.4.1 diffie-hellman-group1
690
691 The length of this group is 1024 bits.  This is REQUIRED group.
692 The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
693
694 Its decimal value is
695
696 .in 6
697 179769313486231590770839156793787453197860296048756011706444
698 423684197180216158519368947833795864925541502180565485980503
699 646440548199239100050792877003355816639229553136239076508735
700 759914822574862575007425302077447712589550957937778424442426
701 617334727629299387668709205606050270810842907692932019128194
702 467627007
703 .in 3
704
705 Its hexadecimal value is
706
707 .in 6
708 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
709 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
710 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
711 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
712 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
713 FFFFFFFF FFFFFFFF
714 .in 3
715
716
717 The generator used with this prime is g = 2.  The group order q is
718 (p - 1) / 2.
719
720 This group was taken from the OAKLEY specification.
721
722
723 .ti 0
724 2.4.2 diffie-hellman-group2
725
726 The length of this group is 1536 bits.  This is OPTIONAL group.
727 The prime is 2^1536 - 2^1472 - 1 + 2^64 * { [2^1406 pi] + 741804 }.
728
729 Its decimal value is
730
731 .in 6
732 241031242692103258855207602219756607485695054850245994265411
733 694195810883168261222889009385826134161467322714147790401219
734 650364895705058263194273070680500922306273474534107340669624
735 601458936165977404102716924945320037872943417032584377865919
736 814376319377685986952408894019557734611984354530154704374720
737 774996976375008430892633929555996888245787241299381012913029
738 459299994792636526405928464720973038494721168143446471443848
739 8520940127459844288859336526896320919633919
740 .in 3
741
742 Its hexadecimal value is
743
744 .in 6
745 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
746 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
747 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
748 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
749 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
750 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
751 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
752 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF
753 .in 3
754
755 The generator used with this prime is g = 2.  The group order q is
756 (p - 1) / 2.
757
758 This group was taken from the OAKLEY specification.
759
760
761 .ti 0
762 2.5 Key Exchange Status Types
763
764 This section defines all key exchange protocol status types that may
765 be returned in the SILC_PACKET_SUCCESS or SILC_PACKET_FAILURE packets
766 to indicate the status of the protocol.  Implementations may map the
767 status types to human readable error message.  All types except the
768 SILC_SKE_STATUS_OK type MUST be sent in SILC_PACKET_FAILURE packet.
769 The length of status is 32 bits (4 bytes).  The following status types
770 are defined:
771
772 .in 6
773 0   SILC_SKE_STATUS_OK
774
775     Protocol were executed successfully.
776
777
778 1   SILC_SKE_STATUS_ERROR
779
780     Unknown error occurred.  No specific error type is defined.
781
782
783 2   SILC_SKE_STATUS_BAD_PAYLOAD
784
785     Provided KE payload were malformed or included bad fields.
786
787
788 3   SILC_SKE_STATUS_UNSUPPORTED_GROUP
789
790     None of the provided groups were supported.
791
792
793 4   SILC_SKE_STATUS_UNSUPPORTED_CIPHER
794
795     None of the provided ciphers were supported.
796
797
798 5   SILC_SKE_STATUS_UNSUPPORTED_PKCS
799
800     None of the provided public key algorithms were supported.
801
802
803 6   SILC_SKE_STATUS_UNSUPPORTED_HASH_FUNCTION
804
805     None of the provided hash functions were supported.
806
807
808 7   SILC_SKE_STATUS_UNSUPPORTED_HMAC
809
810     None of the provided HMACs were supported.
811
812
813 8   SILC_SKE_STATUS_UNSUPPORTED_PUBLIC_KEY
814
815     Provided public key type is not supported.
816
817
818 9   SILC_SKE_STATUS_INCORRECT_SIGNATURE
819
820     Provided signature was incorrect.
821
822
823 10  SILC_SKE_STATUS_BAD_VERSION
824
825     Provided version string was not acceptable.
826
827 11  SILC_SKE_STATUS_INVALID_COOKIE
828
829     The cookie in the Key Exchange Start Payload was malformed,
830     because responder modified the cookie.
831 .in 3
832
833
834 .ti 0
835 3 SILC Connection Authentication Protocol
836
837 Purpose of Connection Authentication protocol is to authenticate the
838 connecting party with server.  Usually connecting party is client but
839 server may connect to router server as well.  Its other purpose is to
840 provide information for the server about which type of connection this
841 is.  The type defines whether this is client, server or router
842 connection.  Server uses this information to create the ID for the
843 connection.
844
845 After the authentication protocol has been successfully completed
846 SILC_PACKET_NEW_ID must be sent to the connecting client by the server.
847 See the [SILC1] for the details of the connecting procedure.
848
849 Server MUST verify the authentication data received and if it is to fail
850 the authentication MUST be failed by sending SILC_PACKET_FAILURE packet.
851 If everything checks out fine the protocol is ended by server by sending
852 SILC_PACKET_SUCCESS packet.
853
854 The protocol is executed after the SILC Key Exchange protocol.  It MUST
855 NOT be executed in any other time.  As it is performed after key exchange
856 protocol all traffic in the connection authentication protocol is
857 encrypted with the exchanged keys.
858
859 The protocol MUST be started by the connecting party by sending the
860 SILC_PACKET_CONNECTION_AUTH packet with Connection Auth Payload,
861 described in the next section.  This payload MUST include the
862 authentication data.  The authentication data is set according
863 authentication method that MUST be known by both parties.  If connecting
864 party does not know what is the mandatory authentication method it MAY
865 request it from the server by sending SILC_PACKET_CONNECTION_AUTH_REQUEST
866 packet.  This packet is not part of this protocol and is described in
867 section Connection Auth Request Payload in [SILC2].  However, if
868 connecting party already knows the mandatory authentication method
869 sending the request is not necessary.
870
871 See [SILC1] and section Connection Auth Request Payload in [SILC2] also
872 for the list of different authentication methods.  Authentication method
873 MAY also be NONE, in which case the server does not require
874 authentication at all.  However, in this case the protocol still MUST be
875 executed; the authentication data just is empty indicating no
876 authentication is required.
877
878 If authentication method is passphrase the authentication data is
879 plaintext passphrase.  As the payload is entirely encrypted it is safe
880 to have plaintext passphrase.  It is also provided as plaintext passphrase
881 because the receiver may need to pass the entire passphrase into a
882 passphrase checker, and hash digest of the passphrase would prevent this.
883 See the section 3.2.1 Passphrase Authentication for more information.
884
885 If authentication method is public key authentication the authentication
886 data is a signature of the hash value of hash HASH plus Key Exchange
887 Start Payload, established by the SILC Key Exchange protocol.  This
888 signature MUST then be verified by the server.  See the section 3.2.2
889 Public Key Authentication for more information.
890
891 The connecting client of this protocol MUST wait after successful execution
892 of this protocol for the SILC_PACKET_NEW_ID packet where it will receive
893 the ID it will be using in the SILC network.  The connecting client cannot
894 start normal SILC session (sending messages or commands) until it has
895 received its ID.  The ID's are always created by the server except
896 for server to router connection where servers create their own ID's.
897
898
899 .ti 0
900 3.1 Connection Auth Payload
901
902 Client sends this payload to authenticate itself to the server.  Server
903 connecting to another server also sends this payload.  Server receiving
904 this payload MUST verify all the data in it and if something is to fail
905 the authentication MUST be failed by sending SILC_PACKET_FAILURE packet.
906
907 The payload may only be sent with SILC_PACKET_CONNECTION_AUTH packet.
908 It MUST NOT be sent in any other packet type.  The following diagram 
909 represent the Connection Auth Payload.
910
911
912 .in 5
913 .nf
914                      1                   2                   3
915  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
917 |        Payload Length         |        Connection Type        |
918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
919 |                                                               |
920 ~                     Authentication Data                       ~
921 |                                                               |
922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
923 .in 3
924  
925 .ce
926 Figure 3:  Connection Auth Payload
927
928
929 .in 6
930 o Payload Length (2 bytes) - Length of the entire Connection 
931   Auth Payload.
932
933 o Connection Type (2 bytes) - Indicates the type of the 
934   connection.  See section Connection Auth Request Payload
935   in [SILC2] for the list of connection types.  This field MUST
936   include valid connection type or the packet MUST be discarded
937   and authentication MUST be failed. 
938
939 o Authentication Data (variable length) - The actual 
940   authentication data.  Contents of this depends on the 
941   authentication method known by both parties.  If no
942   authentication is required this field does not exist.
943 .in 3
944
945
946
947
948 .ti 0
949 3.2 Connection Authentication Types
950
951 SILC supports two authentication types to be used in the connection
952 authentication protocol; passphrase or public key based authentication.
953 The following sections defines the authentication methods.  See [SILC2]
954 for defined numerical authentication method types.
955
956
957 .ti 0
958 3.2.1 Passphrase Authentication
959
960 Passphrase authentication or pre-shared-key based authentication is 
961 simply an authentication where the party that wants to authenticate 
962 itself to the other end sends the passphrase that is required by
963 the other end, for example server.  The plaintext passphrase is put
964 to the payload, that is then encrypted.  The plaintext passphrase
965 MUST be in UTF-8 [RFC2279] encoding.  If the passphrase is in the
966 sender's system in some other encoding it MUST be UTF-8 encoded 
967 before transmitted.  The receiver MAY change the encoding of the
968 passphrase to its system's default character encoding before verifying
969 the passphrase.
970
971 If the passphrase matches with the one in the server's end the
972 authentication is successful.  Otherwise SILC_PACKET_FAILURE MUST be
973 sent to the sender and the protocol execution fails.
974
975 This is REQUIRED authentication method to be supported by all SILC
976 implementations.
977
978 When password authentication is used it is RECOMMENDED that maximum
979 amount of padding is applied to the SILC packet.  This way it is not
980 possible to approximate the length of the password from the encrypted
981 packet.
982
983
984 .ti 0
985 3.2.2 Public Key Authentication
986
987 Public key authentication may be used if passphrase based authentication
988 is not desired.  The public key authentication works by sending a
989 signature as authentication data to the other end, say, server.  The
990 server MUST then verify the signature by the public key of the sender,
991 which the server has received earlier in SKE protocol.
992
993 The signature is computed using the private key of the sender by signing
994 the HASH value provided by the SKE protocol previously, and the Key
995 Exchange Start Payload from SKE protocol that was sent to the server.
996 These are concatenated and hash function is used to compute a hash value
997 which is then signed.
998
999   auth_hash = hash(HASH | Key Exchange Start Payload);
1000   signature = sign(auth_hash);
1001
1002 The hash() function used to compute the value is the hash function
1003 negotiated in the SKE protocol.  The server MUST verify the data, thus
1004 it must keep the HASH and the Key Exchange Start Payload saved during
1005 SKE and authentication protocols.
1006
1007 If the verified signature matches the sent signature, the authentication
1008 were successful and SILC_PACKET_SUCCESS is sent.  If it failed the
1009 protocol execution is stopped and SILC_PACKET_FAILURE is sent.
1010
1011 This is REQUIRED authentication method to be supported by all SILC
1012 implementations.
1013
1014
1015 .ti 0
1016 3.3 Connection Authentication Status Types
1017
1018 This section defines all connection authentication status types that
1019 may be returned in the SILC_PACKET_SUCCESS or SILC_PACKET_FAILURE packets
1020 to indicate the status of the protocol.  Implementations may map the
1021 status types to human readable error message.  All types except the
1022 SILC_AUTH_STATUS_OK type MUST be sent in SILC_PACKET_FAILURE packet.
1023 The length of status is 32 bits (4 bytes).  The following status types
1024 are defined:
1025
1026
1027
1028 0   SILC_AUTH_OK
1029
1030     Protocol was executed successfully.
1031
1032
1033 1   SILC_AUTH_FAILED
1034
1035     Authentication failed.
1036
1037
1038 .ti 0
1039 4 Security Considerations
1040
1041 Security is central to the design of this protocol, and these security
1042 considerations permeate the specification.  Common security considerations
1043 such as keeping private keys truly private and using adequate lengths for 
1044 symmetric and asymmetric keys must be followed in order to maintain the   
1045 security of this protocol.
1046
1047
1048 .ti 0
1049 5 References
1050
1051 [SILC1]      Riikonen, P., "Secure Internet Live Conferencing (SILC),
1052              Protocol Specification", Internet Draft, April 2001.
1053
1054 [SILC2]      Riikonen, P., "SILC Packet Protocol", Internet Draft,
1055              April 2001.
1056
1057 [SILC4]      Riikonen, P., "SILC Commands", Internet Draft, April 2001.
1058
1059 [IRC]        Oikarinen, J., and Reed D., "Internet Relay Chat Protocol",
1060              RFC 1459, May 1993.
1061
1062 [IRC-ARCH]   Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,
1063              April 2000.
1064
1065 [IRC-CHAN]   Kalt, C., "Internet Relay Chat: Channel Management", RFC
1066              2811, April 2000.
1067
1068 [IRC-CLIENT] Kalt, C., "Internet Relay Chat: Client Protocol", RFC
1069              2812, April 2000.
1070
1071 [IRC-SERVER] Kalt, C., "Internet Relay Chat: Server Protocol", RFC
1072              2813, April 2000.
1073
1074 [SSH-TRANS]  Ylonen, T., et al, "SSH Transport Layer Protocol", 
1075              Internet Draft.
1076
1077 [PGP]        Callas, J., et al, "OpenPGP Message Format", RFC 2440,
1078              November 1998.
1079
1080 [SPKI]       Ellison C., et al, "SPKI Certificate Theory", RFC 2693,
1081              September 1999.
1082
1083 [PKIX-Part1] Housley, R., et al, "Internet X.509 Public Key 
1084              Infrastructure, Certificate and CRL Profile", RFC 2459,
1085              January 1999.
1086
1087 [Schneier]   Schneier, B., "Applied Cryptography Second Edition",
1088              John Wiley & Sons, New York, NY, 1996.
1089
1090 [Menezes]    Menezes, A., et al, "Handbook of Applied Cryptography",
1091              CRC Press 1997.
1092
1093 [OAKLEY]     Orman, H., "The OAKLEY Key Determination Protocol",
1094              RFC 2412, November 1998.
1095
1096 [ISAKMP]     Maughan D., et al, "Internet Security Association and
1097              Key Management Protocol (ISAKMP)", RFC 2408, November
1098              1998.
1099
1100 [IKE]        Harkins D., and Carrel D., "The Internet Key Exchange
1101              (IKE)", RFC 2409, November 1998.
1102
1103 [HMAC]       Krawczyk, H., "HMAC: Keyed-Hashing for Message
1104              Authentication", RFC 2104, February 1997.
1105
1106 [PKCS1]      Kalinski, B., and Staddon, J., "PKCS #1 RSA Cryptography
1107              Specifications, Version 2.0", RFC 2437, October 1998.
1108
1109 [RFC2119]    Bradner, S., "Key Words for use in RFCs to Indicate
1110              Requirement Levels", BCP 14, RFC 2119, March 1997.
1111
1112 [RFC2279]    Yergeau, F., "UTF-8, a transformation format of ISO
1113              10646", RFC 2279, January 1998.
1114
1115
1116 .ti 0
1117 6 Author's Address
1118
1119 .nf
1120 Pekka Riikonen
1121 Snellmanninkatu 34 A 15
1122 70100 Kuopio
1123 Finland
1124
1125 EMail: priikone@iki.fi
1126
1127 This Internet-Draft expires XXX