Fixed detaching bugs, channel key distribution after detach,
[crypto.git] / doc / draft-riikonen-silc-spec-06.nroff
1 .pl 10.0i
2 .po 0
3 .ll 7.2i
4 .lt 7.2i
5 .nr LL 7.2i
6 .nr LT 7.2i
7 .ds LF Riikonen
8 .ds RF FORMFEED[Page %]
9 .ds CF
10 .ds LH Internet Draft
11 .ds RH 25 November 2002
12 .ds CH
13 .na
14 .hy 0
15 .in 0
16 .nf
17 Network Working Group                                        P. Riikonen
18 Internet-Draft
19 draft-riikonen-silc-spec-06.txt                         25 November 2002
20 Expires: 25 April 2003
21
22 .in 3
23
24 .ce 3
25 Secure Internet Live Conferencing (SILC),
26 Protocol Specification
27 <draft-riikonen-silc-spec-06.txt>
28
29 .ti 0
30 Status of this Memo
31
32 This document is an Internet-Draft and is in full conformance with   
33 all provisions of Section 10 of RFC 2026.  Internet-Drafts are   
34 working documents of the Internet Engineering Task Force (IETF), its   
35 areas, and its working groups.  Note that other groups may also   
36 distribute working documents as Internet-Drafts.   
37
38 Internet-Drafts are draft documents valid for a maximum of six months   
39 and may be updated, replaced, or obsoleted by other documents at any   
40 time.  It is inappropriate to use Internet-Drafts as reference   
41 material or to cite them other than as "work in progress."   
42
43 The list of current Internet-Drafts can be accessed at   
44 http://www.ietf.org/ietf/1id-abstracts.txt   
45
46 The list of Internet-Draft Shadow Directories can be accessed at   
47 http://www.ietf.org/shadow.html   
48
49 The distribution of this memo is unlimited.  
50
51
52 .ti 0
53 Abstract
54
55 This memo describes a Secure Internet Live Conferencing (SILC)
56 protocol which provides secure conferencing services over insecure
57 network channel.  SILC is IRC [IRC] like protocol, however, it is 
58 not equivalent to IRC and does not support IRC.  Strong cryptographic
59 methods are used to protect SILC packets inside the SILC network.
60 Three other Internet Drafts relates very closely to this memo;
61 SILC Packet Protocol [SILC2], SILC Key Exchange and Authentication
62 Protocols [SILC3] and SILC Commands [SILC4].
63
64
65
66
67
68
69 .ti 0
70 Table of Contents
71
72 .nf
73 1 Introduction ..................................................  3
74   1.1 Requirements Terminology ..................................  4
75 2 SILC Concepts .................................................  4
76   2.1 SILC Network Topology .....................................  4
77   2.2 Communication Inside a Cell ...............................  6
78   2.3 Communication in the Network ..............................  6
79   2.4 Channel Communication .....................................  7
80   2.5 Router Connections ........................................  8
81 3 SILC Specification ............................................  8
82   3.1 Client ....................................................  9
83       3.1.1 Client ID ...........................................  9
84   3.2 Server .................................................... 10
85       3.2.1 Server's Local ID List .............................. 10
86       3.2.2 Server ID ........................................... 11
87       3.2.3 SILC Server Ports ................................... 12
88   3.3 Router .................................................... 12
89       3.3.1 Router's Local ID List .............................. 13
90       3.3.2 Router's Global ID List ............................. 13
91       3.3.3 Router's Server ID .................................. 14
92   3.4 Channels .................................................. 14
93       3.4.1 Channel ID .......................................... 15
94   3.5 Operators ................................................. 16
95   3.6 SILC Commands ............................................. 16
96   3.7 SILC Packets .............................................. 17
97   3.8 Packet Encryption ......................................... 17
98       3.8.1 Determination of the Source and the Destination ..... 18
99       3.8.2 Client To Client .................................... 18
100       3.8.3 Client To Channel ................................... 20
101       3.8.4 Server To Server .................................... 20
102   3.9 Key Exchange And Authentication ........................... 20
103       3.9.1 Authentication Payload .............................. 21
104   3.10 Algorithms ............................................... 23
105       3.10.1 Ciphers ............................................ 23
106              3.10.1.1 CBC Mode .................................. 24
107              3.10.1.2 CTR Mode .................................. 24
108              3.10.1.3 Randomized CBC Mode ....................... 25
109       3.10.2 Public Key Algorithms .............................. 26
110       3.10.3 Hash Functions ..................................... 26
111       3.10.4 MAC Algorithms ..................................... 27
112       3.10.5 Compression Algorithms ............................. 27
113   3.11 SILC Public Key .......................................... 28
114   3.12 SILC Version Detection ................................... 30
115   3.13 Backup Routers ........................................... 31
116       3.13.1 Switching to Backup Router ......................... 32
117       3.13.2 Resuming Primary Router ............................ 33
118       3.13.3 Discussion on Backup Router Scheme ................. 36
119 4 SILC Procedures ............................................... 36
120   4.1 Creating Client Connection ................................ 36
121   4.2 Creating Server Connection ................................ 38
122       4.2.1 Announcing Clients, Channels and Servers ............ 38
123   4.3 Joining to a Channel ...................................... 39
124   4.4 Channel Key Generation .................................... 41
125   4.5 Private Message Sending and Reception ..................... 41
126   4.6 Private Message Key Generation ............................ 42
127   4.7 Channel Message Sending and Reception ..................... 43
128   4.8 Session Key Regeneration .................................. 43
129   4.9 Command Sending and Reception ............................. 44
130   4.10 Closing Connection ....................................... 45
131   4.11 Detaching and Resuming a Session ......................... 45
132 5 Security Considerations ....................................... 47
133 6 References .................................................... 48
134 7 Author's Address .............................................. 49
135
136
137
138 .ti 0
139 List of Figures
140
141 .nf
142 Figure 1:  SILC Network Topology
143 Figure 2:  Communication Inside cell
144 Figure 3:  Communication Between Cells
145 Figure 4:  Router Connections
146 Figure 5:  SILC Public Key
147 Figure 6:  Counter Block
148
149
150 .ti 0
151 1. Introduction
152
153 This document describes a Secure Internet Live Conferencing (SILC)
154 protocol which provides secure conferencing services over insecure
155 network channel.  SILC is IRC [IRC] like protocol, however, it is 
156 not equivalent to IRC and does not support IRC.  Some of the SILC's
157 features are not found in IRC but in traditional Instant Message (IM)
158 protocols.  SILC combines features from both of these chat protocol
159 styles, and SILC can be implemented as either IRC-like system or
160 IM-like system.
161
162 Strong cryptographic methods are used to protect SILC packets inside
163 the SILC network.  Three other Internet Drafts relates very closely
164 to this memo; SILC Packet Protocol [SILC2], SILC Key Exchange and
165 Authentication Protocols [SILC3] and SILC Commands [SILC4].
166
167 The protocol uses extensively packets as conferencing protocol 
168 requires message and command sending.  The SILC Packet Protocol is
169 described in [SILC2] and should be read to fully comprehend this
170 document and protocol.  [SILC2] also describes the packet encryption
171 and decryption in detail.  The SILC Packet Protocol provides secured
172 and authenticated packets, and the protocol is designed to be compact.
173 This makes SILC also suitable in environment of low bandwidth
174 requirements such as mobile networks.  All packet payloads in SILC
175 can be also compressed.
176
177 The security of SILC protocol, and for any security protocol for that
178 matter, is based on strong and secure key exchange protocol.  The SILC
179 Key Exchange protocol is described in [SILC3] along with connection
180 authentication protocol and should be read to fully comprehend this
181 document and protocol.
182
183 The SILC protocol has been developed to work on TCP/IP network
184 protocol, although it could be made to work on other network protocols
185 with only minor changes.  However, it is recommended that TCP/IP
186 protocol is used under SILC protocol.  Typical implementation would
187 be made in client-server model.
188
189
190 .ti 0
191 1.1 Requirements Terminology
192
193 The keywords MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, 
194 MAY, and OPTIONAL, when they appear in this document, are to be
195 interpreted as described in [RFC2119].
196
197
198 .ti 0
199 2. SILC Concepts
200
201 This section describes various SILC protocol concepts that forms the 
202 actual protocol, and in the end, the actual SILC network.  The mission
203 of the protocol is to deliver messages from clients to other clients 
204 through routers and servers in secure manner.  The messages may also 
205 be delivered from one client to many clients forming a group, also 
206 known as a channel.
207
208 This section does not focus to security issues.  Instead, basic network 
209 concepts are introduced to make the topology of the SILC network 
210 clear.
211
212
213 .ti 0
214 2.1 SILC Network Topology
215
216 SILC network is a cellular network as opposed to tree style network 
217 topology.  The rationale for this is to have servers that can perform 
218 specific kind of tasks what other servers cannot perform.  This leads 
219 to two kinds of servers; normal SILC servers and SILC routers.
220
221 A difference between normal server and router server is that routers 
222 knows everything about everything in the network.  They also do the 
223 actual routing of the messages to the correct receiver.  Normal servers 
224 knows only about local information and nothing about global information.
225 This makes the network faster as there are less servers that needs to 
226 keep global information up to date at all time.
227
228 This, on the other hand, leads to cellular like network, where routers 
229 are in the center of the cell and servers are connected to the router.
230
231
232 The following diagram represents SILC network topology.
233
234 .in 8
235 .nf
236   ---- ---- ----         ---- ---- ----
237  | S8 | S5 | S4 |       | S7 | S5 | S6 |
238  ----- ---- -----       ----- ---- -----
239 | S7 | S/R1 | S2 | --- | S8 | S/R2 | S4 |
240  ---- ------ ----       ---- ------ ----
241  | S6 | S3 | S1 |       | S1 | S3 | S2 |         ---- ----
242   ---- ---- ----         ---- ---- ----         | S3 | S1 |
243      Cell 1.   \\             Cell 2.  | \\____  ----- -----
244                 |                     |        | S4 | S/R4 |
245     ---- ---- ----         ---- ---- ----       ---- ------
246    | S7 | S4 | S2 |       | S1 | S3 | S2 |      | S2 | S5 |
247    ----- ---- -----       ----- ---- -----       ---- ----
248   | S6 | S/R3 | S1 | --- | S4 | S/R5 | S5 | ____/ Cell 4.
249    ---- ------ ----       ---- ------ ----
250    | S8 | S5 | S3 |       | S6 | S7 | S8 |     ... etc ...
251     ---- ---- ----         ---- ---- ----
252        Cell 3.                Cell 5.
253 .in 3
254
255 .ce
256 Figure 1:  SILC Network Topology
257
258
259 A cell is formed when a server or servers connect to one router.  In
260 SILC network normal server cannot directly connect to other normal
261 server.  Normal server may only connect to SILC router which then
262 routes the messages to the other servers in the cell.  Router servers
263 on the other hand may connect to other routers to form the actual SILC 
264 network, as seen in above figure.  However, router is also normal SILC 
265 server; clients may connect to it the same way as to normal SILC 
266 server.  Normal server also cannot have active connections to more 
267 than one router.  Normal server cannot be connected to two different 
268 cells.  Router servers, on the other hand, may have as many router to 
269 router connections as needed.
270
271 There are many issues in this network topology that needs to be careful
272 about.  Issues like the size of the cells, the number of the routers in 
273 the SILC network and the capacity requirements of the routers.  These
274 issues should be discussed in the Internet Community and additional
275 documents on the issue may be written.
276
277
278 .ti 0
279 2.2 Communication Inside a Cell
280
281 It is always guaranteed that inside a cell message is delivered to the 
282 recipient with at most two server hops.  A client which is connected to
283 server in the cell and is talking on channel to other client connected 
284 to other server in the same cell, will have its messages delivered from 
285 its local server first to the router of the cell, and from the router 
286 to the other server in the cell.
287
288 The following diagram represents this scenario:
289
290
291 .in 25
292 .nf
293 1 --- S1     S4 --- 5
294          S/R
295  2 -- S2     S3
296      /        |
297     4         3
298 .in 3
299
300
301 .ce
302 Figure 2:  Communication Inside cell
303
304
305 Example:  Client 1. connected to Server 1. send message to
306           Client 4. connected to Server 2. travels from Server 1.
307           first to Router which routes the message to Server 2.
308           which then sends it to the Client 4.  All the other
309           servers in the cell will not see the routed message.
310
311
312 If the client is connected directly to the router, as router is also normal
313 SILC server, the messages inside the cell are always delivered only with 
314 one server hop.  If clients communicating with each other are connected 
315 to the same server, no router interaction is needed.  This is the optimal
316 situation of message delivery in the SILC network.
317
318
319 .ti 0
320 2.3 Communication in the Network
321
322 If the message is destined to server that does not belong to local cell 
323 the message is routed to the router server to which the destination 
324 server belongs, if the local router is connected to destination router.
325 If there is no direct connection to the destination router, the local
326 router routes the message to its primary route.  The following diagram
327 represents message sending between cells.
328
329
330
331
332
333 .in 16
334 .nf
335 1 --- S1     S4 --- 5            S2 --- 1
336          S/R - - - - - - - - S/R
337  2 -- S2     S3           S1
338      /        |             \\
339     4         3              2
340
341    Cell 1.               Cell 2.
342 .in 3
343
344
345 .ce
346 Figure 3:  Communication Between Cells
347
348
349 Example:  Client 5. connected to Server 4. in Cell 1. sends message
350           to Client 2. connected to Server 1. in Cell 2. travels
351           from Server 4. to Router which routes the message to
352           Router in Cell 2, which then routes the message to 
353           Server 1.  All the other servers and routers in the
354           network will not see the routed message.
355
356
357 The optimal case of message delivery from the client point of view is
358 when clients are connected directly to the routers and the messages
359 are delivered from one router to the other.
360
361
362 .ti 0 
363 2.4 Channel Communication
364
365 Messages may be sent to group of clients as well.  Sending messages to
366 many clients works the same way as sending messages point to point, from
367 message delivery point of view.  Security issues are another matter
368 which are not discussed in this section.
369
370 Router server handles the message routing to multiple recipients.  If 
371 any recipient is not in the same cell as the sender the messages are 
372 routed further.
373
374 Server distributes the channel message to its local clients which are 
375 joined to the channel.  Router also distributes the message to its 
376 local clients on the channel.
377
378
379
380 .ti 0
381 2.5 Router Connections
382
383 Router connections play very important role in making the SILC like
384 network topology to work.  For example, sending broadcast packets in
385 SILC network require special connections between routers; routers must
386 be connected in a specific way.
387
388 Every router has their primary route which is a connection to another
389 router in the network.  Unless there is only two routers in the network
390 must not routers use each other as their primary routes.  The router
391 connections in the network must form a ring.
392
393 Example with three routers in the network:
394
395
396 .in 16
397 .nf
398     S/R1 - < - < - < - < - < - < - S/R2
399      \\                               /
400       v                             ^
401        \\ - > -  > - S/R3 - > - > - /
402 .in 3
403
404
405 .ce
406 Figure 4:  Router Connections
407
408
409 Example:  Network with three routers.  Router 1. uses Router 2. as its
410           primary router.  Router 2. uses Router 3. as its primary router,
411           and Router 3. uses Router 1. as its primary router.  There may
412           be other direct connections between the routers but they must
413           not be used as primary routes.
414
415 The above example is applicable to any amount of routers in the network
416 except for two routers.  If there are only two routers in the network both
417 routers must be able to handle situation where they use each other as their
418 primary routes.
419
420 The issue of router connections are very important especially with SILC
421 broadcast packets.  Usually all router wide information in the network is
422 distributed by SILC broadcast packets.  This sort of ring network, with
423 ability to have other direct routes in the network cause interesting
424 routing problems.  The [SILC2] discusses the routing of packets in this
425 sort of network in more detail.
426
427
428 .ti 0
429 3. SILC Specification
430
431 This section describes the SILC protocol.  However, [SILC2] and
432 [SILC3] describes other important protocols that are part of this SILC
433 specification and must be read.
434
435
436 .ti 0
437 3.1 Client
438
439 A client is a piece of software connecting to SILC server.  SILC client 
440 cannot be SILC server.  Purpose of clients is to provide the user 
441 interface of the SILC services for end user.  Clients are distinguished
442 from other clients by unique Client ID.  Client ID is a 128 bit ID that
443 is used in the communication in the SILC network.  The client ID is 
444 based on the nickname selected by the user.  User uses logical nicknames
445 in communication which are then mapped to the corresponding Client ID.
446 Client ID's are low level identifications and must not be seen by the
447 end user.
448
449 Clients provide other information about the end user as well. Information
450 such as the nickname of the user, username and the host name of the end 
451 user and user's real name.  See section 3.2 Server for information of 
452 the requirements of keeping this information.
453
454 The nickname selected by the user is not unique in the SILC network.
455 There can be 2^8 same nicknames for one IP address.  As for comparison
456 to IRC [IRC] where nicknames are unique this is a fundamental difference
457 between SILC and IRC.  This causes the server names or client's host names
458 to be used along with the nicknames to identify specific users when sending
459 messages.  This feature of SILC makes IRC style nickname-wars obsolete as
460 no one owns their nickname; there can always be someone else with the same
461 nickname.  The maximum length of nickname is 128 bytes.
462
463
464 .ti 0
465 3.1.1 Client ID
466
467 Client ID is used to identify users in the SILC network.  The Client ID
468 is unique to the extent that there can be 2^128 different Client ID's,
469 and ID's based on IPv6 addresses extends this to 2^224 different Client
470 ID's.  Collisions are not expected to happen.  The Client ID is defined
471 as follows.
472
473
474
475 .in 6
476 128 bit Client ID based on IPv4 addresses:
477
478 32 bit  Server ID IP address (bits 1-32)
479  8 bit  Random number or counter
480 88 bit  Truncated MD5 hash value of the nickname
481
482 224 bit Client ID based on IPv6 addresses:
483
484 128 bit  Server ID IP address (bits 1-128)
485   8 bit  Random number or counter
486  88 bit  Truncated MD5 hash value of the nickname
487
488 o Server ID IP address - Indicates the server where this
489   client is coming from.  The IP address hence equals the
490   server IP address where to the client has connected.
491
492 o Random number or counter - Random number to further 
493   randomize the Client ID.  Another choice is to use
494   a counter starting from the zero (0).  This makes it
495   possible to have 2^8 same nicknames from the same
496   server IP address.
497
498 o MD5 hash - MD5 hash value of the lowercase nickname is
499   truncated taking 88 bits from the start of the hash value.
500   This hash value is used to search the user's Client ID
501   from the ID lists.  Note that the nickname MUST be in
502   lowercase format.
503
504 .in 3
505 Collisions could occur when more than 2^8 clients using same nickname
506 from the same server IP address is connected to the SILC network.  
507 Server MUST be able to handle this situation by refusing to accept 
508 anymore of that nickname.
509
510 Another possible collision may happen with the truncated hash value of
511 the nickname.  It could be possible to have same truncated hash value for
512 two different nicknames.  However, this is not expected to happen nor
513 cause any problems if it would occur.  Nicknames are usually logical and
514 it is unlikely to have two distinct logical nicknames produce same
515 truncated hash value.
516
517
518 .ti 0
519 3.2 Server
520
521 Servers are the most important parts of the SILC network.  They form the
522 basis of the SILC, providing a point to which clients may connect to.
523 There are two kinds of servers in SILC; normal servers and router servers.
524 This section focus on the normal server and router server is described
525 in the section 3.3 Router.
526
527 Normal servers MUST NOT directly connect to other normal server.  Normal
528 servers may only directly connect to router server.  If the message sent
529 by the client is destined outside the local server it is always sent to
530 the router server for further routing.  Server may only have one active
531 connection to router on same port.  Normal server MUST NOT connect to other
532 cell's router except in situations where its cell's router is unavailable.
533
534
535 .ti 0
536 3.2.1 Server's Local ID List
537
538 Normal server keeps various information about the clients and their end
539 users connected to it.  Every normal server MUST keep list of all locally
540 connected clients, Client ID's, nicknames, usernames and host names and
541 user's real name.  Normal servers only keeps local information and it
542 does not keep any global information.  Hence, normal servers knows only
543 about their locally connected clients.  This makes servers efficient as
544 they don't have to worry about global clients.  Server is also responsible
545 of creating the Client ID's for their clients.
546
547 Normal server also keeps information about locally created channels and
548 their Channel ID's.
549
550
551 Hence, local list for normal server includes:
552
553 .in 6
554 server list        - Router connection
555    o Server name
556    o Server IP address
557    o Server ID
558    o Sending key
559    o Receiving key
560    o Public key
561
562 client list        - All clients in server
563    o Nickname
564    o Username@host
565    o Real name
566    o Client ID
567    o Sending key
568    o Receiving key
569    o Public key
570
571
572 channel list       - All channels in server
573    o Channel name
574    o Channel ID
575    o Client ID's on channel
576    o Client ID modes on channel
577    o Channel key
578 .in 3
579
580
581 .ti 0
582 3.2.2 Server ID
583
584 Servers are distinguished from other servers by unique 64 bit Server ID 
585 (for IPv4) or 160 bit Server ID (for IPv6).  The Server ID is used in
586 the SILC to route messages to correct servers.  Server ID's also provide
587 information for Client ID's, see section 3.1.1 Client ID.  Server ID is
588 defined as follows.
589
590 .in 6
591 64 bit Server ID based on IPv4 addresses:
592
593 32 bit  IP address of the server
594 16 bit  Port
595 16 bit  Random number
596
597 160 bit Server ID based on IPv6 addresses:
598
599 128 bit  IP address of the server
600  16 bit  Port
601  16 bit  Random number
602
603 o IP address of the server - This is the real IP address of
604   the server.
605
606 o Port - This is the port the server is bound to.
607
608 o Random number - This is used to further randomize the Server ID.
609
610 .in 3
611 Collisions are not expected to happen in any conditions.  The Server ID
612 is always created by the server itself and server is responsible of
613 distributing it to the router.
614
615
616 .ti 0
617 3.2.3 SILC Server Ports
618
619 The following ports has been assigned by IANA for the SILC protocol:
620
621 .in 10
622 silc            706/tcp    SILC
623 silc            706/udp    SILC
624 .in 3
625
626
627 If there are needs to create new SILC networks in the future the port
628 numbers must be officially assigned by the IANA.
629
630 Server on network above privileged ports (>1023) SHOULD NOT be trusted
631 as they could have been set up by untrusted party.
632
633
634 .ti 0
635 3.3 Router
636
637 Router server in SILC network is responsible for keeping the cell together
638 and routing messages to other servers and to other routers.  Router server
639 is also a normal server thus clients may connect to it as it would be
640 just normal SILC server.
641
642 However, router servers has a lot of important tasks that normal servers
643 do not have.  Router server knows everything about everything in the SILC.
644 They know all clients currently on SILC, all servers and routers and all
645 channels in SILC.  Routers are the only servers in SILC that care about
646 global information and keeping them up to date at all time.  And, this
647 is what they must do.
648
649
650 .ti 0
651 3.3.1 Router's Local ID List
652
653 Router server as well MUST keep local list of connected clients and
654 locally created channels.  However, this list is extended to include all
655 the informations of the entire cell, not just the server itself as for
656 normal servers.
657
658 However, on router this list is a lot smaller since routers do not need
659 to keep information about user's nickname, username and host name and real
660 name since these are not needed by the router.  The router keeps only
661 information that it needs.
662
663
664 Hence, local list for router includes:
665
666 .in 6
667 server list        - All servers in the cell
668    o Server name
669    o Server ID
670    o Router's Server ID
671    o Sending key
672    o Receiving key
673
674 client list        - All clients in the cell
675    o Client ID
676
677
678 channel list       - All channels in the cell
679    o Channel ID
680    o Client ID's on channel
681    o Client ID modes on channel
682    o Channel key
683 .in 3
684
685
686 Note that locally connected clients and other information include all the
687 same information as defined in section section 3.2.1 Server's Local ID
688 List.
689
690
691 .ti 0
692 3.3.2 Router's Global ID List
693
694 Router server MUST also keep global list.  Normal servers do not have
695 global list as they know only about local information.  Global list
696 includes all the clients on SILC, their Client ID's, all created channels
697 and their Channel ID's and all servers and routers on SILC and their
698 Server ID's.  That is said, global list is for global information and the
699 list must not include the local information already on the router's local
700 list.
701
702 Note that the global list does not include information like nicknames,
703 usernames and host names or user's real names.  Router does not need to
704 keep these informations as they are not needed by the router.  This 
705 information is available from the client's server which maybe queried
706 when needed.
707
708 Hence, global list includes:
709
710 .in 6
711 server list        - All servers in SILC
712    o Server name
713    o Server ID
714    o Router's Server ID
715
716 client list        - All clients in SILC
717    o Client ID
718
719 channel list       - All channels in SILC
720    o Channel ID
721    o Client ID's on channel
722    o Client ID modes on channel
723 .in 3
724
725
726
727 .ti 0
728 3.3.3 Router's Server ID
729
730 Router's Server ID's are equivalent to normal Server ID's.  As routers
731 are normal servers as well same types of ID's applies for routers as well.
732 Thus, see section 3.2.2 Server ID.
733
734
735 .ti 0
736 3.4 Channels
737
738 A channel is a named group of one or more clients which will all receive
739 messages addressed to that channel.  The channel is created when first
740 client requests JOIN command to the channel, and the channel ceases to
741 exist when the last client has left it.  When channel exists, any client
742 can reference it using the name of the channel.  If the channel has
743 a founder mode set and last client leaves the channel the channel does
744 not cease to exist.  The founder mode can be used to make permanent
745 channels in the network.  The founder of the channel can regain the
746 channel founder privileges on the channel later when he joins the
747 channel.
748
749 Channel names are unique although the real uniqueness comes from 64 bit
750 Channel ID.  However, channel names are still unique and no two global
751 channels with same name may exist.  The channel name is a string of
752 maximum length of 256 bytes.  Channel names MUST NOT contain any
753 whitespaces (`  '), any non-printable ASCII characters, commas (`,')
754 and wildcard characters.
755
756 Channels can have operators that can administrate the channel and
757 operate all of its modes.  The following operators on channel exist on
758 the SILC network.
759
760 .in 6
761 o Channel founder - When channel is created the joining client becomes
762   channel founder.  Channel founder is channel operator with some more
763   privileges.  Basically, channel founder can fully operate the channel
764   and all of its modes.  The privileges are limited only to the
765   particular channel.  There can be only one channel founder per
766   channel. Channel founder supersedes channel operator's privileges.
767
768   Channel founder privileges cannot be removed by any other operator on
769   channel.  When channel founder leaves the channel there is no channel
770   founder on the channel.  However, it is possible to set a mode for
771   the channel which allows the original channel founder to regain the
772   founder privileges even after leaving the channel.  Channel founder
773   also cannot be removed by force from the channel.
774
775 o Channel operator - When client joins to channel that has not existed
776   previously it will become automatically channel operator (and channel
777   founder discussed above).  Channel operator is able administrate the
778   channel, set some modes on channel, remove a badly behaving client
779   from the channel and promote other clients to become channel
780   operator.  The privileges are limited only to the particular channel.
781
782   Normal channel user may be promoted (opped) to channel operator
783   gaining channel operator privileges.  Channel founder or other
784   channel operator may also demote (deop) channel operator to normal
785   channel user.
786 .in 3
787
788
789 .ti 0
790 3.4.1 Channel ID
791
792 Channels are distinguished from other channels by unique Channel ID.
793 The Channel ID is a 64 bit ID (for IPv4) or 160 bit ID (for IPv6), and
794 collisions are not expected to happen in any conditions.  Channel names
795 are just for logical use of channels.  The Channel ID is created by the
796 server where the channel is created.  The Channel ID is defined as
797 follows.
798
799 .in 6
800 64 bit Channel ID based on IPv4 addresses:
801
802 32 bit  Router's Server ID IP address (bits 1-32)
803 16 bit  Router's Server ID port (bits 33-48)
804 16 bit  Random number
805
806 160 bit Channel ID based on IPv6 addresses:
807
808 128 bit  Router's Server ID IP address (bits 1-128)
809  16 bit  Router's Server ID port (bits 129-144)
810  16 bit  Random number
811
812 o Router's Server ID IP address - Indicates the IP address of 
813   the router of the cell where this channel is created.  This is 
814   taken from the router's Server ID.  This way SILC router knows 
815   where this channel resides in the SILC network.
816
817 o Router's Server ID port - Indicates the port of the channel on 
818   the server.  This is taken from the router's Server ID.
819
820 o Random number - To further randomize the Channel ID.  This makes
821   sure that there are no collisions.  This also means that
822   in a cell there can be 2^16 channels.
823 .in 3
824
825
826 .ti 0
827 3.5 Operators
828
829 Operators are normal users with extra privileges to their server or
830 router.  Usually these people are SILC server and router administrators
831 that take care of their own server and clients on them.  The purpose of
832 operators is to administrate the SILC server or router.  However, even
833 an operator with highest privileges is not able to enter invite-only
834 channel, to gain access to the contents of a encrypted and authenticated
835 packets traveling in the SILC network or to gain channel operator
836 privileges on public channels without being promoted.  They have the
837 same privileges as everyone else except they are able to administrate
838 their server or router.
839
840
841 .ti 0
842 3.6 SILC Commands
843
844 Commands are very important part on SILC network especially for client
845 which uses commands to operate on the SILC network.  Commands are used
846 to set nickname, join to channel, change modes and many other things.
847
848 Client usually sends the commands and server replies by sending a reply
849 packet to the command.  Server MAY also send commands usually to serve
850 the original client's request.  Usually server cannot send commands to
851 clients, however there MAY be commands that allow the server to send
852 commands to client.  By default servers MAY send commands only to other
853 servers and routers.
854
855 Note that the command reply is usually sent only after client has sent
856 the command request but server is allowed to send command reply packet
857 to client even if client has not requested the command.  Client MAY
858 choose to ignore the command reply.
859
860 It is expected that some of the commands may be miss-used by clients
861 resulting various problems on the server side.  Every implementation
862 SHOULD assure that commands may not be executed more than once, say,
863 in two (2) seconds.  However, to keep response rate up, allowing for
864 example five (5) commands before limiting is allowed.  It is RECOMMENDED
865 that commands such as SILC_COMMAND_NICK, SILC_COMMAND_JOIN, 
866 SILC_COMMAND_LEAVE and SILC_COMMAND_KILL SHOULD be limited in all cases
867 as they require heavy operations.  This should be sufficient to prevent
868 the miss-use of commands.
869
870 SILC commands are described in [SILC4].
871
872
873 .ti 0
874 3.7 SILC Packets
875
876 Packets are naturally the most important part of the protocol and the
877 packets are what actually makes the protocol.  Packets in SILC network
878 are always encrypted using, usually the shared secret session key
879 or some other key, for example, channel key, when encrypting channel
880 messages.  It is not possible to send packet in SILC network without
881 encryption.  The SILC Packet Protocol is a wide protocol and is described
882 in [SILC2].  This document does not define or describe details of
883 SILC packets.
884
885
886 .ti 0
887 3.8 Packet Encryption
888
889 All packets passed in SILC network MUST be encrypted.  This section
890 defines how packets must be encrypted in the SILC network.  The detailed
891 description of the actual encryption process of the packets are
892 described in [SILC2].
893
894 Client and its server shares secret symmetric session key which is
895 established by the SILC Key Exchange Protocol, described in [SILC3]. 
896 Every packet sent from client to server, with exception of packets for
897 channels, are encrypted with this session key.
898
899 Channels has a channel key that are shared by every client on the channel.
900 However, the channel keys are cell specific thus one cell does not know
901 the channel key of the other cell, even if that key is for same channel.
902 Channel key is also known by the routers and all servers that has clients
903 on the channel.  However, channels MAY have channel private keys that
904 are entirely local setting for the client.  All clients on the channel
905 MUST know the channel private key before hand to be able to talk on the
906 channel.  In this case, no server or router know the key for channel.
907
908 Server shares secret symmetric session key with router which is
909 established by the SILC Key Exchange Protocol.  Every packet passed from
910 server to router, with exception of packets for channels, are encrypted
911 with the shared session key.  Same way, router server shares secret
912 symmetric key with its primary route.  However, every packet passed
913 from router to other router, including packets for channels, are
914 encrypted with the shared session key.  Every router connection has
915 their own session keys.
916
917
918 .ti 0
919 3.8.1 Determination of the Source and the Destination
920
921 The source and the destination of the packet needs to be determined
922 to be able to route the packets to correct receiver.  This information
923 is available in the SILC Packet Header which is included in all packets
924 sent in SILC network.  The SILC Packet Header is described in [SILC2].
925
926 The header MUST be encrypted with the session key who is next receiver
927 of the packet along the route.  The receiver of the packet, for example
928 a router along the route, is able to determine the sender and the
929 destination of the packet by decrypting the SILC Packet Header and
930 checking the ID's attached to the header.  The ID's in the header will
931 tell to where the packet needs to be sent and where it is coming from.
932
933 The header in the packet MUST NOT change during the routing of the
934 packet.  The original sender, for example client, assembles the packet
935 and the packet header and server or router between the sender and the
936 receiver MUST NOT change the packet header.  Note however, that some
937 packets such as commands may resent by a server to serve the client's
938 original command.  In this case the command packet send by the server
939 includes the server's IDs.
940
941 Note that the packet and the packet header may be encrypted with
942 different keys.  For example, packets to channels are encrypted with
943 the channel key, however, the header is encrypted with the session key
944 as described above.  However, the header and the packet may be encrypted
945 with same key.  This is the case, for example, with command packets.
946
947
948 .ti 0
949 3.8.2 Client To Client
950
951 The process of message delivery and encryption from client to another
952 client is as follows.
953
954 Example:  Private message from client to another client on different
955           servers.  Clients do not share private message delivery
956           keys; normal session keys are used.
957
958 o Client 1. sends encrypted packet to its server.  The packet is
959   encrypted with the session key shared between client and its
960   server.
961
962 o Server determines the destination of the packet and decrypts
963   the packet.  Server encrypts the packet with session key shared
964   between the server and its router, and sends the packet to the
965   router.
966
967 o Router determines the destination of the packet and decrypts
968   the packet.  Router encrypts the packet with session key 
969   shared between the router and the destination server, and sends
970   the packet to the server.
971
972 o Server determines the client to which the packet is destined
973   to and decrypts the packet.  Server encrypts the packet with
974   session key shared between the server and the destination client,
975   and sends the packet to the client.
976
977 o Client 2. decrypts the packet.
978
979
980 Example:  Private message from client to another client on different
981           servers.  Clients has established secret shared private
982           message delivery key with each other and that is used in 
983           the message encryption.
984
985 o Client 1. sends encrypted packet to its server.  The packet header
986   is encrypted with the session key shared between the client and
987   server, and the private message is encrypted with the private
988   message delivery key shared between clients.
989
990 o Server determines the destination of the packet and sends the 
991   packet to the router.
992
993 o Router determines the destination of the packet and sends the
994   packet to the server.
995
996 o Server determines the client to which the packet is destined
997   to and sends the packet to the client.
998
999 o Client 2. decrypts the packet with the secret shared key.
1000
1001
1002 If clients share secret key with each other the private message
1003 delivery is much simpler since servers and routers between the
1004 clients do not need to decrypt and re-encrypt the packet.
1005
1006 The process for clients on same server is much simpler as there are
1007 no need to send the packet to the router.  The process for clients 
1008 on different cells is same as above except that the packet is routed 
1009 outside the cell.  The router of the destination cell routes the 
1010 packet to the destination same way as described above.
1011
1012
1013 .ti 0
1014 3.8.3 Client To Channel
1015
1016 Process of message delivery from client on channel to all the clients
1017 on the channel.
1018
1019 Example:  Channel of four users; two on same server, other two on
1020           different cells.  Client sends message to the channel.
1021
1022 o Client 1. encrypts the packet with channel key and sends the
1023   packet to its server.
1024
1025 o Server determines local clients on the channel and sends the
1026   packet to the Client on the same server.  Server then sends
1027   the packet to its router for further routing.
1028
1029 o Router determines local clients on the channel, if found
1030   sends packet to the local clients.  Router determines global
1031   clients on the channel and sends the packet to its primary
1032   router or fastest route.
1033
1034 o (Other router(s) do the same thing and sends the packet to
1035    the server(s))
1036
1037 o Server determines local clients on the channel and sends the
1038   packet to the client.
1039
1040 o All clients receiving the packet decrypts the packet.
1041
1042
1043 .ti 0
1044 3.8.4 Server To Server
1045
1046 Server to server packet delivery and encryption is described in above
1047 examples. Router to router packet delivery is analogous to server to
1048 server.  However, some packets, such as channel packets, are processed
1049 differently.  These cases are described later in this document and
1050 more in detail in [SILC2].
1051
1052
1053 .ti 0
1054 3.9 Key Exchange And Authentication
1055
1056 Key exchange is done always when for example client connects to server
1057 but also when server and router, and router and router connects to each
1058 other.  The purpose of key exchange protocol is to provide secure key
1059 material to be used in the communication.  The key material is used to
1060 derive various security parameters used to secure SILC packets.  The
1061 SILC Key Exchange protocol is described in detail in [SILC3].
1062
1063 Authentication is done after key exchange protocol has been successfully
1064 completed.  The purpose of authentication is to authenticate for example
1065 client connecting to the server.  However, usually clients are accepted
1066 to connect to server without explicit authentication.  Servers are
1067 required use authentication protocol when connecting.  The authentication
1068 may be based on passphrase (pre-shared-secret) or public key.  All
1069 passphrases sent in SILC protocol MUST be UTF-8 [RFC2279] encoded.
1070 The connection authentication protocol is described in detail in [SILC3].
1071
1072
1073 .ti 0
1074 3.9.1 Authentication Payload
1075
1076 Authentication payload is used separately from the SKE and the Connection
1077 Authentication protocol.  It can be used during the session to authenticate
1078 with the remote.  For example, the client can authenticate itself to the
1079 server to become server operator.  In this case, Authentication Payload is
1080 used.
1081
1082 The format of the Authentication Payload is as follows:
1083
1084 .in 5
1085 .nf
1086                      1                   2                   3
1087  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1088 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1089 |        Payload Length         |     Authentication Method     |
1090 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1091 |      Public Data Length       |                               |
1092 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1093 |                                                               |
1094 ~                           Public Data                         ~
1095 |                                                               |
1096 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1097 |   Authentication Data Length  |                               |
1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1099 |                                                               |
1100 ~                       Authentication Data                     ~
1101 |                                                               |
1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1103 .in 3
1104  
1105 .ce
1106 Figure 5:  Authentication Payload
1107
1108
1109 .in 6
1110 o Payload Length (2 bytes) - Length of the entire payload.
1111
1112 o Authentication Method (2 bytes) - The method of the
1113   authentication.  The authentication methods are defined
1114   in [SILC2] in the Connection Auth Request Payload.  The NONE 
1115   authentication method SHOULD NOT be used.
1116
1117 o Public Data Length (2 bytes) - Indicates the length of
1118   the Public Data field.
1119
1120 o Public Data (variable length) - This is defined only if
1121   the authentication method is public key.  If it is any other
1122   this field MAY include a random data for padding purposes.
1123   However, in this case the field MUST be ignored by the
1124   receiver.
1125
1126   When the authentication method is public key this includes
1127   128 to 4096 bytes of non-zero random data that is used in
1128   the signature process, described subsequently.
1129
1130 o Authentication Data Length (2 bytes) - Indicates the
1131   length of the Authentication Data field.  If zero (0)
1132   value is found in this field the payload MUST be 
1133   discarded.
1134
1135 o Authentication Data (variable length) - Authentication 
1136   method dependent authentication data.
1137 .in 3
1138
1139
1140 If the authentication method is password based, the Authentication
1141 Data field includes the plaintext UTF-8 encoded password.  It is safe
1142 to send plaintext password since the entire payload is encrypted.  In
1143 this case the Public Data Length is set to zero (0), but MAY also include
1144 random data for padding purposes.  It is also RECOMMENDED that maximum
1145 amount of padding is applied to SILC packet when using password based
1146 authentication.  This way it is not possible to approximate the length
1147 of the password from the encrypted packet.
1148
1149 If the authentication method is public key based (or certificate)
1150 the Authentication Data is computed as follows:
1151
1152   HASH = hash(random bytes | ID | public key (or certificate));
1153   Authentication Data = sign(HASH);
1154
1155 The hash() and the sign() are the hash function and the public key
1156 cryptography function selected in the SKE protocol, unless otherwise
1157 stated in the context where this payload is used.  The public key
1158 is SILC style public key unless certificates are used.  The ID is the
1159 entity's ID (Client or Server ID) which is authenticating itself.  The
1160 ID encoding is described in [SILC2].  The random bytes are non-zero
1161 random bytes of length between 128 and 4096 bytes, and will be included
1162 into the Public Data field as is.
1163
1164 The receiver will compute the signature using the random data received
1165 in the payload, the ID associated to the connection and the public key
1166 (or certificate) received in the SKE protocol.  After computing the
1167 receiver MUST verify the signature.  In case of public key authentication
1168 also this payload is encrypted.
1169
1170
1171 .ti 0
1172 3.10 Algorithms
1173
1174 This section defines all the allowed algorithms that can be used in
1175 the SILC protocol.  This includes mandatory cipher, mandatory public
1176 key algorithm and MAC algorithms.
1177
1178
1179 .ti 0
1180 3.10.1 Ciphers
1181
1182 Cipher is the encryption algorithm that is used to protect the data
1183 in the SILC packets.  See [SILC2] of the actual encryption process and
1184 definition of how it must be done.  SILC has a mandatory algorithm that
1185 must be supported in order to be compliant with this protocol.
1186
1187 The following ciphers are defined in SILC protocol:
1188
1189 aes-256-cbc          AES in CBC mode, 256 bit key            (REQUIRED)
1190 aes-256-ctr          AES in CTR mode, 256 bit key            (RECOMMENDED)
1191 aes-256-rcbc         AES in randomized CBC mode, 256 bit key (OPTIONAL)
1192 aes-192-<mode>       AES in <mode> mode, 192 bit key         (OPTIONAL)
1193 aes-128-<mode>       AES in <mode> mode, 128 bit key         (RECOMMENDED)
1194 twofish-256-<mode>   Twofish in <mode> mode, 256 bit key     (OPTIONAL)
1195 twofish-192-<mode>   Twofish in <mode> mode, 192 bit key     (OPTIONAL)
1196 twofish-128-<mode>   Twofish in <mode> mode, 128 bit key     (OPTIONAL)
1197 cast-256-<mode>      CAST-256 in <mode> mode, 256 bit key    (OPTIONAL)
1198 cast-192-<mode>      CAST-256 in <mode> mode, 192 bit key    (OPTIONAL)
1199 cast-128-<mode>      CAST-256 in <mode> mode, 128 bit key    (OPTIONAL)
1200 serpent-<len>-<mode> Serpent in <mode> mode, <len> bit key   (OPTIONAL)
1201 rc6-<len>-<mode>     RC6 in <mode> mode, <len> bit key       (OPTIONAL)
1202 mars-<len>-<mode>    MARS in <mode> mode, <len> bit key      (OPTIONAL)
1203 none                 No encryption                           (OPTIONAL)
1204
1205 The <mode> is either "cbc", "ctr" or "rcbc".  Other encryption modes MAY
1206 be defined as to be used in SILC using the same format.  The <len> is
1207 either 256, 192 or 128 bit key length.  Also, additional ciphers MAY be
1208 defined to be used in SILC by using the same name format as above.
1209
1210 Algorithm "none" does not perform any encryption process at all and 
1211 thus is not recommended to be used.  It is recommended that no client
1212 or server implementation would accept none algorithm except in special
1213 debugging mode.
1214
1215
1216 .ti 0
1217 3.10.1.1 CBC Mode
1218
1219 The "cbc" encryption mode is CBC mode with inter-packet chaining.  This
1220 means that the Initial Vector (IV) for the next encryption block is
1221 the previous ciphertext block.  The very first IV MUST be random and is
1222 generated as described in [SILC3].
1223
1224
1225 .ti 0
1226 3.10.1.2 CTR Mode
1227
1228 The "ctr" encryption mode is CTR mode.  The CTR mode in SILC is stateful
1229 in encryption and decryption.  Both sender and receiver maintain the
1230 counter for the CTR mode and thus can precompute the key stream for
1231 encryption and decryption.  By default, CTR mode does not require
1232 plaintext padding, however implementations MAY apply padding to the
1233 packets.  If the last key block is larger than the last plaintext block
1234 the resulted value is truncated to the size of the plaintext block and
1235 the most significant bits are used.  When sending authentication data
1236 inside packets the maximum amount of padding SHOULD be applied with
1237 CTR mode as well.
1238
1239 In CTR mode only the encryption operation of the cipher is used.  The
1240 decryption operation is not needed since both encryption and decryption
1241 process is simple XOR with the plaintext block and the key stream block.
1242
1243 The counter block is used to create the key for the CTR mode.  When
1244 SILC specifications refer to Initial Vector (IV) in general cases, in
1245 case of CTR mode it refers to the counter block.  The format of the
1246 128 bit counter block is as follows:
1247
1248 .in 5
1249 .nf
1250                      1                   2                   3
1251  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1253 |                   Truncated HASH from SKE                     |
1254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1255 |                Sending/Receiving IV from SKE                  |
1256 |                                                               |
1257 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1258 |                        Block Counter                          |
1259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1260 .in 3
1261
1262 .ce
1263 Figure 6:  Counter Block
1264
1265 .in 6
1266 o Truncated HASH from SKE (4 bytes) - This value is the 32 most
1267   significant bits from the HASH value that was computed as a
1268   result of SKE protocol.  This acts as session identifier and
1269   each rekey MUST produce a new HASH value.
1270
1271 o Sending/Receiving IV from SKE (8 bytes) - This value is the 64
1272   most significant bits from the Sending IV or Receiving IV
1273   generated in the SKE protocol.  When this mode is used to
1274   encrypt sending traffic the Sending IV is used, when used to
1275   decrypt receiving traffic the Receiving IV is used.  This
1276   assures that two parties of the protocol use different IV
1277   for sending traffic.  Each rekey MUST produce a new value.
1278
1279 o Block Counter (4 bytes) - This is the counter value for the
1280   counter block and is MSB ordered number starting from one (1)
1281   value for first block and incrementing for subsequent blocks.
1282   The same value MUST NOT be used twice.  The rekey MUST be
1283   performed before this counter value wraps.
1284 .in 3
1285
1286 CTR mode MUST NOT be used with "none" MAC.  Implementations also MUST
1287 assure that the same counter block is not used to encrypt more than
1288 one block.  Also, the key material used with CTR mode MUST be fresh
1289 key material.  Static keys (pre-shared keys) MUST NOT be used with
1290 CTR mode.  For this reason using CTR mode to encrypt for example
1291 channel messages or private messages with a pre-shared key is
1292 inappropriate.  For private messages, the Key Agreement could be
1293 performed to produce fresh key material.
1294
1295 If the IV Included flag was negotiated in SKE, implementations SHOULD
1296 still use the same counter block format as defined above.  However, 
1297 implementations are RECOMMENDED to replace the Truncated HASH field
1298 with a 32 bit random value for each IV (counter block) per encrypted
1299 SILC packet.  Also note, that in this case the decryption process is
1300 not stateful and receiver cannot precompute the key stream.
1301
1302
1303 .ti 0
1304 3.10.1.3 Randomized CBC Mode
1305
1306 The "rcbc" encryption mode is CBC mode with randomized IV.  This means
1307 that each IV for each packet MUST be chosen randomly.  When encrypting
1308 more than one block the normal inter-packet chaining is used, but for
1309 the first block new random IV is selected in each packet.  In this mode
1310 the IV is appended at the end of the last ciphertext block and thus
1311 delivered to the recipient.  This mode increases the ciphertext size by
1312 one ciphertext block.  Note also that some data payloads in SILC are
1313 capable of delivering the IV to the recipient.  When explicitly
1314 encrypting these payloads with randomized CBC the IV MUST NOT be appended
1315 at the end of the ciphertext.  When encrypting these payloads with
1316 "cbc" mode they implicitly become randomized CBC since the IV is
1317 usually selected random and included in the ciphertext.  In these
1318 cases using either CBC or randomized CBC is actually equivalent.
1319
1320
1321 .ti 0
1322 3.10.2 Public Key Algorithms
1323
1324 Public keys are used in SILC to authenticate entities in SILC network
1325 and to perform other tasks related to public key cryptography.  The 
1326 public keys are also used in the SILC Key Exchange protocol [SILC3].
1327
1328 The following public key algorithms are defined in SILC protocol:
1329
1330 .in 6
1331 rsa        RSA  (REQUIRED)
1332 dss        DSS  (OPTIONAL)
1333 .in 3
1334
1335 DSS is described in [Menezes].  The RSA MUST be implemented according
1336 PKCS #1 [PKCS1].  The mandatory PKCS #1 implementation in SILC MUST be
1337 compliant to either PKCS #1 version 1.5 or newer with the following
1338 notes: The signature encoding is always in same format as the encryption
1339 encoding regardless of the PKCS #1 version.  The signature with appendix
1340 (with hash algorithm OID in the data) MUST NOT be used in the SILC.  The
1341 rationale for this is that there is no binding between the PKCS #1 OIDs
1342 and the hash algorithms used in the SILC protocol.  Hence, the encoding
1343 is always in PKCS #1 version 1.5 format.
1344
1345 Additional public key algorithms MAY be defined to be used in SILC.
1346
1347 When signatures are computed in SILC the computing of the signature is
1348 represented as sign().  The signature computing procedure is dependent
1349 of the public key algorithm, and the public key or certificate encoding.
1350 When using SILC public key the signature is computed as described in
1351 previous paragraph for RSA and DSS keys.  If the hash function is not
1352 specified separately for signing process sha1 MUST be used.  When using
1353 SSH2 public keys the signature is computed as described in [SSH-TRANS].
1354 When using X.509 version 3 certificates the signature is computed as
1355 described in [PKCS7].  When using OpenPGP certificates the signature is
1356 computed as described in [PGP].
1357
1358
1359 .ti 0
1360 3.10.3 Hash Functions
1361
1362 Hash functions are used as part of MAC algorithms defined in the next
1363 section.  They are also used in the SILC Key Exchange protocol defined
1364 in the [SILC3].
1365
1366 The following Hash algorithm are defined in SILC protocol:
1367
1368 .in 6
1369 sha1             SHA-1, length = 20      (REQUIRED)
1370 md5              MD5, length = 16        (RECOMMENDED)
1371 .in 3
1372
1373
1374
1375 .ti 0
1376 3.10.4 MAC Algorithms
1377
1378 Data integrity is protected by computing a message authentication code
1379 (MAC) of the packet data.  See [SILC2] for details how to compute the
1380 MAC.
1381
1382 The following MAC algorithms are defined in SILC protocol:
1383
1384 .in 6
1385 hmac-sha1-96     HMAC-SHA1, length = 12 bytes  (REQUIRED)
1386 hmac-md5-96      HMAC-MD5, length = 12 bytes   (OPTIONAL)
1387 hmac-sha1        HMAC-SHA1, length = 20 bytes  (OPTIONAL)
1388 hmac-md5         HMAC-MD5, length = 16 bytes   (OPTIONAL)
1389 none             No MAC                        (OPTIONAL)
1390 .in 3
1391
1392 The "none" MAC is not recommended to be used as the packet is not
1393 authenticated when MAC is not computed.  It is recommended that no
1394 client or server would accept none MAC except in special debugging
1395 mode.
1396
1397 The HMAC algorithm is described in [HMAC] and hash algorithms that
1398 are used as part of the HMACs are described in [Scheneir] and in
1399 [Menezes].
1400
1401 Additional MAC algorithms MAY be defined to be used in SILC.
1402
1403
1404 .ti 0
1405 3.10.5 Compression Algorithms
1406
1407 SILC protocol supports compression that may be applied to unencrypted
1408 data.  It is recommended to use compression on slow links as it may
1409 significantly speed up the data transmission.  By default, SILC does not
1410 use compression which is the mode that must be supported by all SILC
1411 implementations.
1412
1413 The following compression algorithms are defined:
1414
1415 .in 6
1416 none        No compression               (REQUIRED)
1417 zlib        GNU ZLIB (LZ77) compression  (OPTIONAL)
1418 .in 3
1419
1420 Additional compression algorithms MAY be defined to be used in SILC.
1421
1422
1423
1424 .ti 0
1425 3.11 SILC Public Key
1426
1427 This section defines the type and format of the SILC public key.  All
1428 implementations MUST support this public key type.  See [SILC3] for
1429 other optional public key and certificate types allowed in the SILC
1430 protocol.  Public keys in SILC may be used to authenticate entities
1431 and to perform other tasks related to public key cryptography.
1432
1433 The format of the SILC Public Key is as follows:
1434
1435
1436 .in 5
1437 .nf
1438                      1                   2                   3
1439  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1440 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1441 |                        Public Key Length                      |
1442 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1443 |     Algorithm Name Length     |                               |
1444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1445 |                                                               |
1446 ~                         Algorithm Name                        ~
1447 |                                                               |
1448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1449 |       Identifier Length       |                               |
1450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
1451 |                                                               |
1452 ~                           Identifier                          ~
1453 |                                                               |
1454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1455 |                                                               |
1456 ~                           Public Data                         ~
1457 |                                                               |
1458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1459 .in 3
1460
1461 .ce
1462 Figure 5:  SILC Public Key
1463
1464
1465 .in 6
1466 o Public Key Length (4 bytes) - Indicates the full length
1467   of the public key, not including this field.
1468
1469 o Algorithm Name Length (2 bytes) - Indicates the length
1470   of the Algorithm Length field, not including this field.
1471
1472 o Algorithm name (variable length) - Indicates the name
1473   of the public key algorithm that the key is.  See the
1474   section 3.10.2 Public Key Algorithms for defined names.
1475
1476 o Identifier Length (2 bytes) - Indicates the length of
1477   the Identifier field, not including this field.
1478
1479 o Identifier (variable length) - Indicates the identifier
1480   of the public key.  This data can be used to identify
1481   the owner of the key.  The identifier is of the following
1482   format:
1483
1484      UN   User name
1485      HN   Host name or IP address
1486      RN   Real name
1487      E    EMail address
1488      O    Organization
1489      C    Country
1490
1491
1492   Examples of an identifier:
1493
1494     `UN=priikone, HN=poseidon.pspt.fi, E=priikone@poseidon.pspt.fi'
1495
1496     `UN=sam, HN=dummy.fi, RN=Sammy Sam, O=Company XYZ, C=Finland'
1497
1498   At least user name (UN) and host name (HN) MUST be provided as
1499   identifier.  The fields are separated by commas (`,').  If
1500   comma is in the identifier string it must be written as `\\,',
1501   for example, `O=Company XYZ\\, Inc.'.
1502
1503 o Public Data (variable length) - Includes the actual
1504   public data of the public key.
1505
1506   The format of this field for RSA algorithm is
1507   as follows:
1508
1509      4 bytes            Length of e
1510      variable length    e
1511      4 bytes            Length of n
1512      variable length    n
1513
1514
1515   The format of this field for DSS algorithm is
1516   as follows:
1517
1518      4 bytes            Length of p
1519      variable length    p
1520      4 bytes            Length of q
1521      variable length    q
1522      4 bytes            Length of g
1523      variable length    g
1524      4 bytes            Length of y
1525      variable length    y
1526
1527   The variable length fields are multiple precession
1528   integers encoded as strings in both examples.
1529
1530   Other algorithms must define their own type of this
1531   field if they are used.
1532 .in 3
1533
1534 All fields in the public key are in MSB (most significant byte first)
1535 order.  All strings in the public key are UTF-8 encoded.
1536
1537 If an external protocol need to refer to SILC Public Key by name, the
1538 name "silc-rsa" and "silc-dss" for SILC Public Key based on RSA algorithm
1539 and SILC Public Key based on DSS algorithm, respectively, are to be used.
1540 However, this SILC specification does not use these names directly, and 
1541 they are defined here for external protocols (protocols that may like 
1542 to use SILC Public Key).
1543
1544
1545 .ti 0
1546 3.12 SILC Version Detection
1547
1548 The version detection of both client and server is performed at the
1549 connection phase while executing the SILC Key Exchange protocol.  The
1550 version identifier is exchanged between initiator and responder.  The
1551 version identifier is of the following format:
1552
1553 .in 6
1554 SILC-<protocol version>-<software version>
1555 .in 3
1556
1557 The version strings are of the following format:
1558
1559 .in 6
1560 protocol version = <major>.<minor>
1561 software version = <major>[.<minor>[.<build or vendor string>]]
1562 .in 3
1563
1564 Protocol version MAY provide both major and minor version.  Currently
1565 implementations MUST set the protocol version and accept at least the 
1566 protocol version as SILC-1.2-<software version>.  If new protocol version 
1567 causes incompatibilities with older version the <minor> version number 
1568 MUST be incremented.  The <major> is incremented if new protocol version 
1569 is fully incompatible.
1570
1571 Software version MAY provide major, minor and build (vendor) version.
1572 The software version MAY be freely set and accepted.  The version string 
1573 MUST consist of printable US-ASCII characters.
1574
1575 Thus, the version strings could be, for example:
1576
1577 .in 6
1578 SILC-1.1-2.0.2
1579 SILC-1.0-1.2
1580 SILC-1.2-1.0.VendorXYZ
1581 SILC-1.2-2.4.5 Vendor Limited
1582 .in 3
1583
1584
1585 .ti 0
1586 3.13 Backup Routers
1587
1588 Backup routers may exist in the cell in addition of the primary router.
1589 However, they must not be active routers and act as routers in the cell.
1590 Only one router may be acting as primary router in the cell.  In the case
1591 of failure of the primary router may one of the backup routers become
1592 active.  The purpose of backup routers are in case of failure of the
1593 primary router to maintain working connections inside the cell and outside
1594 the cell and to avoid netsplits.
1595
1596 Backup routers are normal servers in the cell that are prepared to take
1597 over the tasks of the primary router if needed.  They need to have at
1598 least one direct and active connection to the primary router of the cell.
1599 This communication channel is used to send the router information to
1600 the backup router.  When the backup router connects to the primary router
1601 of the cell it MUST present itself as router server in the Connection
1602 Authentication protocol, even though it is normal server as long as the
1603 primary router is available.  Reason for this is that the configuration
1604 needed in the responder end requires usually router connection level
1605 configuration.  The responder, however must understand and treat the
1606 connection as normal server (except when feeding router level data to
1607 the backup router).
1608
1609 Backup router must know everything that the primary router knows to be
1610 able to take over the tasks of the primary router.  It is the primary
1611 router's responsibility to feed the data to the backup router.  If the
1612 backup router does not know all the data in the case of failure some
1613 connections may be lost.  The primary router of the cell must consider
1614 the backup router being actual router server when it feeds the data to
1615 it.
1616
1617 In addition of having direct connection to the primary router of the
1618 cell, the backup router must also have connection to the same router
1619 the primary router of the cell is connected.  However, it must not be
1620 active router connection meaning that the backup router must not use
1621 that channel as its primary route and it must not notify the router
1622 about having connected servers, channels and clients behind it.  It
1623 merely connects to the router.  This sort of connection is later
1624 referred as being passive connection.  Some keepalive actions may be
1625 needed by the router to keep the connection alive.
1626
1627 It is required that other normal servers have passive connections to
1628 the backup router(s) in the cell.  Some keepalive actions may be needed
1629 by the server to keep the connection alive.  After they notice the
1630 failure of the primary router they must start using the connection to
1631 the first backup router as their primary route.
1632
1633 Also, if any other router in the network is using the cell's primary
1634 router as its own primary router, it must also have passive connection
1635 to the cell's backup router.  It too is prepared to switch to use the
1636 backup router as its new primary router as soon as the original primary
1637 router becomes unresponsive.
1638
1639 All of the parties of this protocol knows which one is the backup router
1640 of the cell from their local configuration.  Each of the entity must
1641 be configured accordingly and care must be taken when configuring the
1642 backup routers, servers and other routers in the network.
1643
1644 It must be noted that some of the channel messages and private messages
1645 may be lost during the switch to the backup router.  The announcements
1646 assures that the state of the network is not lost during the switch.
1647
1648 It is RECOMMENDED that there would be at least one backup router in
1649 the cell.  It is NOT RECOMMENDED to have all servers in the cell acting
1650 as backup routers as it requires establishing several connections to
1651 several servers in the cell.  Large cells can easily have several
1652 backup routers in the cell.
1653
1654 The order of the backup routers are decided at the configuration phase.
1655 All the parties of this protocol must be configured accordingly to 
1656 understand the order of the backup routers.  It is not required that
1657 the backup server is actually active server in the cell.  Backup router
1658 may be a spare server in the cell that does not accept normal client
1659 connections at all.  It may be reserved purely for the backup purposes.
1660 These, however, are cell management issues.
1661
1662 If also the first backup router is down as well and there is another
1663 backup router in the cell then it will start acting as the primary
1664 router as described above.
1665
1666
1667 .ti 0
1668 3.13.1 Switching to Backup Router
1669
1670 When the primary router of the cell becomes unresponsive, for example
1671 by sending EOF to the connection, all the parties of this protocol MUST
1672 replace the old connection to the primary router with first configured
1673 backup router.  The backup router usually needs to do local modifications
1674 to its database in order to update all the information needed to maintain
1675 working routes.  The backup router must understand that clients that
1676 were originated from the primary router are now originated from some of
1677 the existing server connections and must update them accordingly.  It
1678 must also remove those clients that were owned by the primary router
1679 since those connections were lost when the primary router became
1680 unresponsive.
1681
1682 All the other parties of the protocol must also update their local
1683 database to understand that the route to the primary router will now go
1684 to the backup router.
1685
1686 Servers connected to the backup router MUST send SILC_PACKET_RESUME_ROUTER
1687 packet with type number 21, to indicate that the server will start using
1688 the backup router as primary router.  The backup router MUST NOT allow
1689 this action if it detects that primary is still up and running.  If
1690 backup router knows that primary is up and running it MUST send type
1691 number 22 back to the server.  The server then MUST NOT use the backup
1692 as primary router, but must try to establish connection back to the
1693 primary router.  If the action is allowed type number 21 is sent back
1694 to the server from the backup router.
1695
1696 The servers connected to the backup router must then announce their
1697 clients, channels, channel users, channel user modes and channel modes
1698 to the backup router.  This is to assure that none of the important notify 
1699 packets were lost during the switch to the backup router.  The backup
1700 router must check which of these announced entities it already have
1701 and distribute the new ones to the primary route.
1702
1703 The backup router too must announce its servers, clients, channels
1704 and other information to the new primary router.  The primary router
1705 of the backup router too must announce its informations to the backup
1706 router.  Both must process only the ones they do not know about.  If
1707 any of the announced modes does not match then they are enforced in
1708 normal manner defined later in this specification.
1709
1710
1711 .ti 0
1712 3.13.2 Resuming Primary Router
1713
1714 Usually the primary router is unresponsive only a short period of time
1715 and it is intended that the original router of the cell will resume
1716 its position as primary router when it comes back online.  The backup
1717 router that is now acting as primary router of the cell must constantly
1718 try to connect to the original primary router of the cell.  It is
1719 RECOMMENDED that it would try to reconnect in 30 second intervals to
1720 the primary router.
1721
1722 When the connection is established to the primary router the backup
1723 resuming protocol is executed.  The protocol is advanced as follows:
1724
1725   1. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
1726      value 1 the primary router that came back online.  The packet
1727      will indicate the primary router has been replaced by the backup
1728      router.  After sending the packet the backup router will announce
1729      all of its channels, channel users, modes etc. to the primary
1730      router.
1731
1732      If the primary knows that it has not been replaced (for example
1733      the backup itself disconnected from the primary router and thinks
1734      that it is now primary in the cell) the primary router send
1735      SILC_PACKET_FAILURE with the type value 1 back to the backup
1736      router.  If backup receives this it MUST NOT continue with the
1737      backup resuming protocol.
1738
1739   2. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
1740      value 2 to its current primary router to indicate that it will
1741      resign as being primary router.  Then, backup router sends the
1742      SILC_PACKET_RESUME_ROUTER packet with type value 1 to all
1743      connected servers to also indicate that it will resign as being
1744      primary router.
1745
1746   3. Backup router also send SILC_PACKET_RESUME_ROUTER packet with
1747      type value 2 to the router that is using the backup router
1748      currently as its primary router.
1749
1750   4. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
1751      with type value 1 or 2 must reconnect immediately to the
1752      primary router of the cell that came back online.  After they
1753      have created the connection they MUST NOT use that connection
1754      as active primary route but still route all packets to the
1755      backup router.  After the connection is created they MUST send
1756      SILC_PACKET_RESUME_ROUTER with type value 3 back to the
1757      backup router.  The session ID value found in the first packet
1758      MUST be set in this packet.
1759
1760   5. Backup router MUST wait for all packets with type value 3 before
1761      it continues with the protocol.  It knows from the session ID values
1762      set in the packet when it have received all packets.  The session
1763      value should be different in all packets it have sent earlier.
1764      After the packets is received the backup router sends the
1765      SILC_PACKET_RESUME_ROUTER packet with type value 4 to the
1766      primary router that came back online.  This packet will indicate 
1767      that the backup router is now ready to resign as being primary
1768      router.  The session ID value in this packet MUST be the same as
1769      in first packet sent to the primary router.  During this time
1770      the backup router must still route all packets it is receiving
1771      from server connections.
1772
1773   6. The primary router receives the packet and send the
1774      SILC_PACKET_RESUME_ROUTER with type value 5 to all connected servers
1775      including the backup router.  It also sends the packet with type
1776      value 6 to its primary router, and to the router that is using
1777      it as its primary router.  The Session ID value in this packet
1778      SHOULD be zero (0).
1779
1780   7. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
1781      with type value 5 or 6 must switch their primary route to the
1782      new primary router and remove the route for the backup router, since
1783      it is not anymore the primary router of the cell.  They must also
1784      update their local database to understand that the clients are
1785      not originated from the backup router but from the locally connected
1786      servers.  After that they MUST announce their channels, channel
1787      users, modes etc. to the primary router.  They must not use the
1788      backup router connection after this and the connection is considered
1789      to be passive connection.  The implementations SHOULD be able
1790      to disable the connection without closing the actual link.
1791
1792 After this protocol is executed the backup router is now again normal
1793 server in the cell that has the backup link to the primary router.  The
1794 primary router feeds the router specific data again to the backup router.
1795 All server connections in the backup router are considered passive
1796 connections.
1797
1798 When the primary router of the cell comes back online and connects
1799 to its primary router, the remote primary router must send the 
1800 SILC_PACKET_RESUME_ROUTER with type value 20 indicating that the
1801 connection is not allowed since the router has been replaced by an
1802 backup router.  The session ID value in this packet SHOULD be zero (0).
1803 When the router receives this packet it must not use the connection
1804 as active connection but to understand that it cannot act as primary
1805 router in the cell.  It must wait that the backup router connects to
1806 it, and the backup resuming protocol is executed.
1807
1808 The following type values has been defined for SILC_PACKET_RESUME_ROUTER
1809 packet:
1810
1811   1    SILC_SERVER_BACKUP_START
1812   2    SILC_SERVER_BACKUP_START_GLOBAL
1813   3    SILC_SERVER_BACKUP_START_CONNECTED
1814   4    SILC_SERVER_BACKUP_START_ENDING
1815   5    SILC_SERVER_BACKUP_START_RESUMED
1816   6    SILC_SERVER_BACKUP_START_RESUMED_GLOBAL
1817   20   SILC_SERVER_BACKUP_START_REPLACED
1818   21   SILC_SERVER_BACKUP_START_USE
1819   22   SILC_SERVER_BACKUP_START_USE_DENIED
1820
1821 If any other value is found in the type field the packet must be 
1822 discarded.  The SILC_PACKET_RESUME_ROUTER packet and its payload
1823 is defined in [SILC2].
1824
1825
1826
1827
1828 .ti 0
1829 3.13.3 Discussion on Backup Router Scheme
1830
1831 It is clear that this backup router support is not able to handle all
1832 possible situations arising in unreliable network environment.  This
1833 scheme for example does not handle situation when the router actually
1834 does not go offline but the network link goes down temporarily.  It would
1835 require some intelligence to figure out when it is best time to switch
1836 to the backup router.  To make it even more complicated it is possible
1837 that the backup router may have not lost the network link to the primary
1838 router.
1839
1840 Other possible situation is when the network link is lost temporarily
1841 between two primary routers in the SILC network.  Unless the routers
1842 notice the link going down they cannot perhaps find alternative routes.
1843 Worst situation is when the link goes down only for a short period of
1844 time, thus causing lag.  Should the routers or servers find alternative
1845 routes if they cannot get response from the router during the lag?
1846 When alternative routes are being found it must be careful not to
1847 mess up existing primary routes between routers in the network.
1848
1849 It is suggested that the current backup router scheme is only temporary
1850 solution and existing backup router protocols are studied further.  It
1851 is also suggested that the backup router specification will be separated
1852 from this SILC specification Internet-Draft and additional specification
1853 is written on the subject.
1854
1855
1856 .ti 0
1857 4 SILC Procedures
1858
1859 This section describes various SILC procedures such as how the 
1860 connections are created and registered, how channels are created and
1861 so on.  The section describes the procedures only generally as details
1862 are described in [SILC2] and [SILC3].
1863
1864
1865 .ti 0
1866 4.1 Creating Client Connection
1867
1868 This section describes the procedure when client connects to SILC server.
1869 When client connects to server the server MUST perform IP address lookup
1870 and reverse IP address lookup to assure that the origin host really is
1871 who it claims to be.  Client, host, connecting to server SHOULD have 
1872 both valid IP address and fully qualified domain name (FQDN).
1873
1874 After that the client and server performs SILC Key Exchange protocol
1875 which will provide the key material used later in the communication.
1876 The key exchange protocol MUST be completed successfully before the
1877 connection registration may continue.  The SILC Key Exchange protocol
1878 is described in [SILC3].
1879
1880 Typical server implementation would keep a list of connections that it
1881 allows to connect to the server.  The implementation would check, for
1882 example, the connecting client's IP address from the connection list
1883 before the SILC Key Exchange protocol has been started.  Reason for
1884 this is that if the host is not allowed to connect to the server there
1885 is no reason to perform the key exchange protocol.
1886
1887 After successful key exchange protocol the client and server performs
1888 connection authentication protocol.  The purpose of the protocol is to
1889 authenticate the client connecting to the server.  Flexible
1890 implementation could also accept the client to connect to the server
1891 without explicit authentication.  However, if authentication is
1892 desired for a specific client it may be based on passphrase or
1893 public key authentication.  If authentication fails the connection
1894 MUST be terminated.  The connection authentication protocol is described
1895 in [SILC3].
1896
1897 After successful key exchange and authentication protocol the client
1898 registers itself by sending SILC_PACKET_NEW_CLIENT packet to the
1899 server.  This packet includes various information about the client
1900 that the server uses to create the client.  Server creates the client
1901 and sends SILC_PACKET_NEW_ID to the client which includes the created
1902 Client ID that the client MUST start using after that.  After that
1903 all SILC packets from the client MUST have the Client ID as the
1904 Source ID in the SILC Packet Header, described in [SILC2].
1905
1906 Client MUST also get the server's Server ID that is to be used as
1907 Destination ID in the SILC Packet Header when communicating with
1908 the server (for example when sending commands to the server).  The
1909 ID may be resolved in two ways.  Client can take the ID from an
1910 previously received packet from server that MUST include the ID,
1911 or to send SILC_COMMAND_INFO command and receive the Server ID as
1912 command reply.
1913
1914 Server MAY choose not to use the information received in the
1915 SILC_PACKET_NEW_CLIENT packet.  For example, if public key or 
1916 certificate were used in the authentication, server MAY use those
1917 informations rather than what it received from client.  This is suitable
1918 way to get the true information about client if it is available.
1919
1920 The nickname of client is initially set to the username sent in the
1921 SILC_PACKET_NEW_CLIENT packet.  User should set the nickname to more
1922 suitable by sending SILC_COMMAND_NICK command.  However, this is not
1923 required as part of registration process.
1924
1925 Server MUST also distribute the information about newly registered
1926 client to its router (or if the server is router, to all routers in
1927 the SILC network).  More information about this in [SILC2].
1928
1929 Router server MUST also check whether some client in the local cell
1930 is watching for the nickname this new client has, and send the 
1931 SILC_NOTIFY_TYPE_WATCH to the watcher.
1932
1933
1934 .ti 0
1935 4.2 Creating Server Connection
1936
1937 This section describes the procedure when server connects to its
1938 router (or when router connects to other router, the cases are
1939 equivalent).  The procedure is very much alike when client connects
1940 to the server thus it is not repeated here.
1941
1942 One difference is that server MUST perform connection authentication
1943 protocol with proper authentication.  A proper authentication is based
1944 on passphrase authentication or public key authentication based on
1945 digital signatures.
1946
1947 After server and router has successfully performed the key exchange
1948 and connection authentication protocol, the server register itself
1949 to the router by sending SILC_PACKET_NEW_SERVER packet.  This packet
1950 includes the server's Server ID that it has created by itself and
1951 other relevant information about the server.
1952
1953 After router has received the SILC_PACKET_NEW_SERVER packet it
1954 distributes the information about newly registered server to all routers
1955 in the SILC network.  More information about this in [SILC2].
1956
1957 As client needed to resolve the destination ID this MUST be done by the
1958 server that connected to the router, as well.  The way to resolve it is
1959 to get the ID from previously received packet.  The server MAY also 
1960 use SILC_COMMAND_INFO command to resolve the ID.  Server MUST also start
1961 using its own Server ID as Source ID in SILC Packet Header and the
1962 router's Server ID as Destination when communicating with the router.
1963
1964
1965 .ti 0
1966 4.2.1 Announcing Clients, Channels and Servers
1967
1968 After server or router has connected to the remote router, and it already
1969 has connected clients and channels it MUST announce them to the router.
1970 If the server is router server, also all the local servers in the cell
1971 MUST be announced.
1972
1973 All clients are announced by compiling a list of ID Payloads into the
1974 SILC_PACKET_NEW_ID packet.  All channels are announced by compiling a
1975 list of Channel Payloads into the SILC_PACKET_NEW_CHANNEL packet.
1976 Channels' mode and founder public key and other channel mode specific
1977 data is announced by sending SILC_NOTIFY_TYPE_CMODE_CHANGE notify list.
1978 Also, the channel users on the channels must be announced by compiling a
1979 list of Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into
1980 the SILC_PACKET_NOTIFY packet.  The users' modes on the channel must 
1981 also be announced by compiling list of Notify Payloads with the 
1982 SILC_NOTIFY_TYPE_CUMODE_CHANGE notify type into the SILC_PACKET_NOTIFY
1983 packet.
1984
1985 The router MUST also announce the local servers by compiling list of
1986 ID Payloads into the SILC_PACKET_NEW_ID packet.
1987
1988 Also, clients' modes (user modes in SILC) MUST be announced.  This is
1989 done by compiling a list of Notify Payloads with SILC_NOTIFY_UMODE_CHANGE
1990 notify type into the SILC_PACKET_NOTIFY packet.  Also, channel's topics
1991 MUST be announced by compiling a list of Notify Payloads with the
1992 SILC_NOTIFY_TOPIC_SET notify type into the SILC_PACKET_NOTIFY packet.
1993
1994 The router which receives these lists MUST process them and broadcast
1995 the packets to its primary route.  When processing the announced channels
1996 and channel users the router MUST check whether a channel exists already
1997 with the same name.  If channel exists with the same name it MUST check
1998 whether the Channel ID is different.  If the Channel ID is different the
1999 router MUST send the notify type SILC_NOTIFY_TYPE_CHANNEL_CHANGE to the
2000 server to force the channel ID change to the ID the router has.  If the
2001 mode of the channel is different the router MUST send the notify type
2002 SILC_NOTIFY_TYPE_CMODE_CHANGE to the server to force the mode change
2003 to the mode that the router has.
2004
2005 The router MUST also generate new channel key and distribute it to the
2006 channel.  The key MUST NOT be generated if the SILC_CMODE_PRIVKEY mode
2007 is set.
2008
2009 If the channel has channel founder on the router the router MUST send
2010 the notify type SILC_NOTIFY_TYPE_CUMODE_CHANGE to the server to force
2011 the mode change for the channel founder on the server.  The channel 
2012 founder privileges MUST be removed.
2013
2014 The router processing the channels MUST also compile a list of
2015 Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into the
2016 SILC_PACKET_NOTIFY and send the packet to the server.  This way the
2017 server (or router) will receive the clients on the channel that
2018 the router has.
2019
2020
2021 .ti 0
2022 4.3 Joining to a Channel
2023
2024 This section describes the procedure when client joins to a channel.
2025 Client joins to channel by sending command SILC_COMMAND_JOIN to the
2026 server.  If the receiver receiving join command is normal server the
2027 server MUST check its local list whether this channel already exists
2028 locally.  This would indicate that some client connected to the server
2029 has already joined to the channel.  If this is case the client is
2030 joined to the channel, new channel key is created and information about
2031 newly joined channel is sent to the router.  The router is informed
2032 by sending SILC_NOTIFY_TYPE_JOIN notify type.  The notify type MUST
2033 also be sent to the local clients on the channel.  The new channel key
2034 is also sent to the router and to local clients on the channel.
2035
2036 If the channel does not exist in the local list the client's command
2037 MUST be sent to the router which will then perform the actual joining
2038 procedure.  When server receives the reply to the command from the
2039 router it MUST be sent to the client which sent the command originally.
2040 Server will also receive the channel key from the server that it MUST
2041 send to the client which originally requested the join command.  The
2042 server MUST also save the channel key.
2043
2044 If the receiver of the join command is router it MUST first check its
2045 local list whether anyone in the cell has already joined to the channel.
2046 If this is the case the client is joined to the channel and reply is
2047 sent to the client.  If the command was sent by server the command reply
2048 is sent to the server which sent it.  Then the router MUST also create
2049 new channel key and distribute it to all clients on the channel and
2050 all servers that has clients on the channel.  Router MUST also send
2051 the SILC_NOTIFY_TYPE_JOIN notify type to local clients on the channel
2052 and to local servers that has clients on the channel.
2053
2054 If the channel does not exist on the router's local list it MUST
2055 check the global list whether the channel exists at all.  If it does
2056 the client is joined to the channel as described previously.  If
2057 the channel does not exist the channel is created and the client
2058 is joined to the channel.  The channel key is also created and
2059 distributed as previously described.  The client joining to the created
2060 channel is made automatically channel founder and both channel founder
2061 and channel operator privileges is set for the client.
2062
2063 If the router created the channel in the process, information about the
2064 new channel MUST be broadcasted to all routers.  This is done by 
2065 broadcasting SILC_PACKET_NEW_CHANNEL packet to the router's primary
2066 route.  When the router joins the client to the channel it MUST also
2067 send information about newly joined client to all routers in the SILC
2068 network.  This is done by broadcasting the SILC_NOTIFY_TYPE_JOIN notify
2069 type to the router's primary route. 
2070
2071 It is important to note that new channel key is created always when
2072 new client joins to channel, whether the channel has existed previously
2073 or not.  This way the new client on the channel is not able to decrypt
2074 any of the old traffic on the channel.  Client which receives the reply to
2075 the join command MUST start using the received Channel ID in the channel
2076 message communication thereafter.  Client also receives the key for the
2077 channel in the command reply.  Note that the channel key is never
2078 generated if the SILC_CMODE_PRIVKEY mode is set.
2079
2080
2081 .ti 0
2082 4.4 Channel Key Generation
2083
2084 Channel keys are created by router which creates the channel by taking
2085 enough randomness from cryptographically strong random number generator.
2086 The key is generated always when channel is created, when new client
2087 joins a channel and after the key has expired.  Key could expire for
2088 example in an hour.
2089
2090 The key MUST also be re-generated whenever some client leaves a channel.
2091 In this case the key is created from scratch by taking enough randomness
2092 from the random number generator.  After that the key is distributed to
2093 all clients on the channel.  However, channel keys are cell specific thus
2094 the key is created only on the cell where the client, which left the
2095 channel, exists.  While the server or router is creating the new channel
2096 key, no other client may join to the channel.  Messages that are sent
2097 while creating the new key are still processed with the old key.  After
2098 server has sent the SILC_PACKET_CHANNEL_KEY packet MUST client start
2099 using the new key.  If server creates the new key the server MUST also
2100 send the new key to its router.  See [SILC2] on more information about
2101 how channel messages must be encrypted and decrypted when router is
2102 processing them.
2103
2104 When client receives the SILC_PACKET_CHANNEL_KEY packet with the
2105 Channel Key Payload it MUST process the key data to create encryption
2106 and decryption key, and to create the HMAC key that is used to compute
2107 the MACs of the channel messages.  The processing is as follows:
2108
2109   channel_key  = raw key data
2110   HMAC key     = hash(raw key data)
2111
2112 The raw key data is the key data received in the Channel Key Payload.
2113 The hash() function is the hash function used in the HMAC of the channel.
2114 Note that the server also MUST save the channel key.
2115
2116
2117 .ti 0
2118 4.5 Private Message Sending and Reception
2119
2120 Private messages are sent point to point.  Client explicitly destine
2121 a private message to specific client that is delivered to only to that
2122 client.  No other client may receive the private message.  The receiver
2123 of the private message is destined in the SILC Packet Header as any
2124 other packet as well.
2125
2126 If the sender of a private message does not know the receiver's Client
2127 ID, it MUST resolve it from server.  There are two ways to resolve the
2128 client ID from server; it is RECOMMENDED that client implementations
2129 send SILC_COMMAND_IDENTIFY command to receive the Client ID.  Client
2130 MAY also send SILC_COMMAND_WHOIS command to receive the Client ID.
2131 If the sender has received earlier a private message from the receiver
2132 it should have cached the Client ID from the SILC Packet Header.
2133
2134 If server receives a private message packet which includes invalid
2135 destination Client ID the server MUST send SILC_NOTIFY_TYPE_ERROR
2136 notify to the client with error status indicating that such Client ID
2137 does not exist.
2138
2139 See [SILC2] for description of private message encryption and decryption
2140 process.
2141
2142
2143 .ti 0
2144 4.6 Private Message Key Generation
2145
2146 Private message MAY be protected with a key generated by the client.
2147 The key may be generated and sent to the other client by sending packet
2148 SILC_PACKET_PRIVATE_MESSAGE_KEY which travels through the network
2149 and is secured by session keys.  After that the private message key
2150 is used in the private message communication between those clients.
2151 The key sent inside the payload SHOULD be randomly generated.  This
2152 packet MUST NOT be used to send pre-shared keys.
2153
2154 Other choice is to entirely use keys that are not sent through
2155 the SILC network at all.  This significantly adds security.  This key
2156 could be a pre-shared-key that is known by both of the clients.  Both
2157 agree about using the key and starts sending packets that indicate
2158 that the private message is secured using private message key.  In
2159 case of pre-shared keys (static keys) the IV used in encryption SHOULD
2160 be chosen randomly.
2161
2162 It is also possible to negotiate fresh key material by performing
2163 Key Agreement.  The SILC_PACKET_KEY_AGREEMENT packet MAY be used to
2164 negotiate the fresh key material.  In this case the resulted key
2165 material is used to secure the private messages.  Also, the IV used
2166 in encryption is used as defined in [SILC3], unless otherwise stated
2167 by the encryption mode used.  By performing Key Agreement the clients
2168 may negotiate the cipher and HMAC to be used in the private message
2169 encryption and to negotiate additional security parameters.
2170
2171 If the key is pre-shared key or other key material not generated by
2172 Key Agreement, then the key material SHOULD be processed as defined
2173 in [SILC3].  In the processing, however, the HASH, as defined in
2174 [SILC3] MUST be ignored.  After processing the key material it is
2175 employed as defined in [SILC3].  In this case also, implementations
2176 SHOULD use the SILC protocol's mandatory cipher and HMAC in private
2177 message encryption.
2178
2179
2180 .ti 0
2181 4.7 Channel Message Sending and Reception
2182
2183 Channel messages are delivered to group of users.  The group forms a
2184 channel and all clients on the channel receives messages sent to the
2185 channel.
2186
2187 Channel messages are destined to channel by specifying the Channel ID
2188 as Destination ID in the SILC Packet Header.  The server MUST then
2189 distribute the message to all clients on the channel by sending the
2190 channel message destined explicitly to a client on the channel.
2191
2192 If server receives a channel message packet which includes invalid
2193 destination Channel ID the server MUST send SILC_NOTIFY_TYPE_ERROR
2194 notify to the sender with error status indicating that such Channel ID
2195 does not exist.
2196
2197 See the [SILC2] for description of channel message routing for router
2198 servers, and channel message encryption and decryption process.
2199
2200
2201 .ti 0
2202 4.8 Session Key Regeneration
2203
2204 Session keys MUST be regenerated periodically, say, once in an hour.
2205 The re-key process is started by sending SILC_PACKET_REKEY packet to
2206 other end, to indicate that re-key must be performed.  The initiator
2207 of the connection SHOULD initiate the re-key.
2208
2209 If perfect forward secrecy (PFS) flag was selected in the SILC Key
2210 Exchange protocol [SILC3] the re-key MUST cause new key exchange with
2211 SKE protocol.  In this case the protocol is secured with the old key
2212 and the protocol results to new key material.  See [SILC3] for more
2213 information.  After the SILC_PACKET_REKEY packet is sent the sender
2214 will perform the SKE protocol.
2215
2216 If PFS flag was set the resulted key material is processed as described
2217 in the section Processing the Key Material in [SILC3].  The difference
2218 with re-key in the processing is that the initial data for the hash 
2219 function is just the resulted key material and not the HASH as it
2220 is not computed at all with re-key.  Other than that, the key processing
2221 it equivalent to normal SKE negotiation.
2222
2223 If PFS flag was not set, which is the default case, then re-key is done
2224 without executing SKE protocol.  In this case, the new key is created by
2225 providing the current sending encryption key to the SKE protocol's key
2226 processing function.  The process is described in the section Processing
2227 the Key Material in [SILC3].  The difference in the processing is that
2228 the initial data for the hash function is the current sending encryption
2229 key and not the SKE's KEY and HASH values.  Other than that, the key
2230 processing is equivalent to normal SKE negotiation.
2231
2232 After both parties has regenerated the session key, both MUST send
2233 SILC_PACKET_REKEY_DONE packet to each other.  These packets are still
2234 secured with the old key.  After these packets, the subsequent packets
2235 MUST be protected with the new key.
2236
2237
2238 .ti 0
2239 4.9 Command Sending and Reception
2240
2241 Client usually sends the commands in the SILC network.  In this case
2242 the client simply sends the command packet to server and the server
2243 processes it and replies with command reply packet.  See the [SILC3]
2244 for detailed description of all commands.
2245
2246 However, if the server is not able to process the command, it is sent 
2247 to the server's router.  This is case for example with commands such
2248 as, SILC_COMMAND_JOIN and SILC_COMMAND_WHOIS commands.  However, there
2249 are other commands as well.  For example, if client sends the WHOIS
2250 command requesting specific information about some client the server must
2251 send the WHOIS command to router so that all clients in SILC network
2252 are searched.  The router, on the other hand, sends the WHOIS command
2253 further to receive the exact information about the requested client.
2254 The WHOIS command travels all the way to the server which owns the client
2255 and it replies with command reply packet.  Finally, the server which
2256 sent the command receives the command reply and it must be able to
2257 determine which client sent the original command.  The server then
2258 sends command reply to the client.  Implementations should have some
2259 kind of cache to handle, for example, WHOIS information.  Servers
2260 and routers along the route could all cache the information for faster
2261 referencing in the future.
2262
2263 The commands sent by server may be sent hop by hop until someone is able
2264 to process the command.  However, it is preferred to destine the command
2265 as precisely as it is possible.  In this case, other routers en route
2266 MUST route the command packet by checking the true sender and true
2267 destination of the packet.  However, servers and routers MUST NOT route
2268 command reply packets to clients coming from other server.  Client
2269 MUST NOT accept command reply packet originated from anyone else but
2270 from its own server.
2271
2272
2273
2274 .ti 0
2275 4.10 Closing Connection
2276
2277 When remote client connection is closed the server MUST send the notify
2278 type SILC_NOTIFY_TYPE_SIGNOFF to its primary router and to all channels
2279 the client was joined.  The server MUST also save the client's information
2280 for a period of time for history purposes.
2281
2282 When remote server or router connection is closed the server or router
2283 MUST also remove all the clients that was behind the server or router
2284 from the SILC Network.  The server or router MUST also send the notify
2285 type SILC_NOTIFY_TYPE_SERVER_SIGNOFF to its primary router and to all
2286 local clients that are joined on the same channels with the remote 
2287 server's or router's clients.
2288
2289 Router server MUST also check whether some client in the local cell
2290 is watching for the nickname this client has, and send the 
2291 SILC_NOTIFY_TYPE_WATCH to the watcher, unless the client which left
2292 the network has the SILC_UMODE_REJECT_WATCHING user mode set.
2293
2294
2295 .ti 0
2296 4.11 Detaching and Resuming a Session
2297
2298 SILC protocol provides a possibility for a client to detach itself from
2299 the network without actually signing off from the network.  The client
2300 connection to the server is closed but the client remains as valid client
2301 in the network.  The client may then later resume its session back from
2302 any server in the network.
2303
2304 When client wishes to detach from the network it MUST send the
2305 SILC_COMMAND_DETACH command to its server.  The server then MUST set
2306 SILC_UMODE_DETACHED mode to the client and send SILC_NOTIFY_UMODE_CHANGE
2307 notify to its primary router, which will then MUST broadcast it further
2308 to other routers in the network.  This user mode indicates that the
2309 client is detached from the network.  Implementations MUST NOT use
2310 the SILC_UMODE_DETACHED flag to determine whether a packet can be sent
2311 to the client.  All packets MUST still be sent to the client even if
2312 client is detached from the network.  Only the server that originally
2313 had the active client connection is able to make the decision after it
2314 notices that the network connection is not active.  In this case the
2315 default case is to discard the packet.
2316
2317 The SILC_UMODE_DETACHED flag cannot be set by client itself directly
2318 with SILC_COMMAND_UMODE command, but only implicitly by sending the
2319 SILC_COMMAND_DETACH command.  The flag also cannot be unset by the
2320 client, server or router with SILC_COMMAND_UMODE command, but only
2321 implicitly by sending and receiving the SILC_PACKET_RESUME_CLIENT
2322 packet.
2323
2324 When the client wishes to resume its session in the SILC Network it
2325 connects to a server in the network, which MAY also be a different
2326 from the original server, and performs normal procedures regarding
2327 creating a connection as described in section 4.1.  After the SKE
2328 and the Connection Authentication protocols has been successfully
2329 completed the client MUST NOT send SILC_PACKET_NEW_CLIENT packet, but
2330 MUST send SILC_PACKET_RESUME_CLIENT packet.  This packet is used to
2331 perform the resuming procedure.  The packet MUST include the detached
2332 client's Client ID, which the client must know.  It also includes
2333 Authentication Payload which includes signature made with the client's
2334 private key.  The signature is computed as defined in the section
2335 3.9.1.  Thus, the authentication method MUST be based in public key
2336 authentication.
2337
2338 When server receives the SILC_PACKET_RESUME_CLIENT packet it MUST
2339 do the following:  Server checks that the Client ID is valid client
2340 and that it has the SILC_UMODE_DETACHED mode set.  Then it verifies
2341 the Authentication Payload with the detached client's public key.
2342 If it does not have the public key it retrieves it by sending
2343 SILC_COMMAND_GETKEY command to the server that has the public key from
2344 the original client connection.  The server MUST NOT use the public
2345 key received in the SKE protocol for this connection.  If the
2346 signature is valid the server unsets the SILC_UMODE_DETACHED flag,
2347 and sends the SILC_PACKET_RESUME_CLIENT packet to its primary router.
2348 The routers MUST broadcast the packet and unset the SILC_UMODE_DETACHED
2349 flag when the packet is received.  If the server is router server it
2350 also MUST send the SILC_PACKET_RESUME_CLIENT packet to the original
2351 server whom owned the detached client.
2352
2353 The servers and routers that receives the SILC_PACKET_RESUME_CLIENT
2354 packet MUST know whether the packet already has been received for
2355 the client.  It is protocol error to attempt to resume the client
2356 session from more than one server.  The implementations could set
2357 internal flag that indicates that the client is resumed.  If router
2358 receive SILC_PACKET_RESUME_CLIENT packet for client that is already
2359 resumed the client MUST be killed from the network.  This would
2360 indicate that the client is attempting to resume the session more
2361 than once which is protocol error.  In this case the router sends
2362 SILC_NOTIFY_TYPE_KILLED to the client.  All routers that detect
2363 the same situation MUST also send the notify for the client.
2364
2365 The servers and routers that receive the SILC_PACKET_RESUME_CLIENT
2366 must also understand that the client may not be found behind the
2367 same server that it originally came from.  They must update their
2368 caches according this.  The server that now owns the client session
2369 MUST check whether the Client ID of the resumed client is based
2370 on the server's Server ID.  If it is not it creates a new Client
2371 ID and send SILC_NOTIFY_TYPE_NICK_CHANGE to the network.  It MUST
2372 also send the channel keys of all channels that the client is
2373 joined to the client since it does not have them.  Whether the
2374 Client ID was changed or not the server MUST send SILC_PACKET_NEW_ID
2375 packet to the client.  Only after this the client is resumed back
2376 to the network and may start sending packets and messages.
2377
2378 It is also possible that the server does not know about the channels
2379 that the client has joined.  In this case it join the client internally
2380 to the channels, generate new channel keys and distribute the keys
2381 to the channels as described in section 4.4.
2382
2383 It is implementation issue for how long servers keep detached client
2384 sessions.  It is RECOMMENDED that the detached sessions would be
2385 persistent as long as the server is running.
2386
2387
2388 .ti 0
2389 5 Security Considerations
2390
2391 Security is central to the design of this protocol, and these security
2392 considerations permeate the specification.  Common security considerations
2393 such as keeping private keys truly private and using adequate lengths for
2394 symmetric and asymmetric keys must be followed in order to maintain the
2395 security of this protocol.
2396
2397 Special attention must also be paid on the servers and routers that are
2398 running the SILC service.  The SILC protocol's security depends greatly
2399 on the security and the integrity of the servers and administrators that
2400 are running the service.  It is recommended that some form of registration
2401 is required by the server and router administrator prior acceptance to
2402 the SILC Network.  Even though, the SILC protocol is secure in a network
2403 of mutual distrust between clients, servers, routers and administrators
2404 of the servers, the client should be able to trust the servers they are
2405 using if they wish to do so.
2406
2407 It however must be noted that if the client requires absolute security
2408 by not trusting any of the servers or routers in the SILC Network, it can
2409 be accomplished by negotiating private keys outside the SILC Network,
2410 either using SKE or some other key exchange protocol, or to use some
2411 other external means for distributing the keys.  This applies for all 
2412 messages, private messages and channel messages.
2413
2414 It is important to note that SILC, like any other security protocol is
2415 not full proof system; the SILC servers and routers could very well be
2416 compromised.  However, to provide acceptable level of security and
2417 usability for end user the protocol use many times session keys or other
2418 keys generated by the servers to secure the messages.  This is
2419 intentional design feature to allow ease of use for end user.  This way
2420 the network is still usable, and remains encrypted even if the external
2421 means of distributing the keys is not working.  The implementation,
2422 however, may like to not follow this design feature, and always negotiate
2423 the keys outside SILC network.  This is acceptable solution and many times
2424 recommended.  The implementation still must be able to work with the
2425 server generated keys.
2426
2427 If this is unacceptable for the client or end user, the private keys
2428 negotiated outside the SILC Network should always be used.  In the end
2429 it is always implementor's choice whether to negotiate private keys by
2430 default or whether to use the keys generated by the servers.
2431
2432 It is also recommended that router operators in the SILC Network would
2433 form a joint forum to discuss the router and SILC Network management
2434 issues.  Also, router operators along with the cell's server operators
2435 should have a forum to discuss the cell management issues.
2436
2437
2438 .ti 0
2439 6 References
2440
2441 [SILC2]      Riikonen, P., "SILC Packet Protocol", Internet Draft,
2442              May 2002.
2443
2444 [SILC3]      Riikonen, P., "SILC Key Exchange and Authentication 
2445              Protocols", Internet Draft, May 2002.
2446
2447 [SILC4]      Riikonen, P., "SILC Commands", Internet Draft, May 2002.
2448
2449 [IRC]        Oikarinen, J., and Reed D., "Internet Relay Chat Protocol",
2450              RFC 1459, May 1993.
2451
2452 [IRC-ARCH]   Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,
2453              April 2000.
2454
2455 [IRC-CHAN]   Kalt, C., "Internet Relay Chat: Channel Management", RFC
2456              2811, April 2000.
2457
2458 [IRC-CLIENT] Kalt, C., "Internet Relay Chat: Client Protocol", RFC
2459              2812, April 2000.
2460
2461 [IRC-SERVER] Kalt, C., "Internet Relay Chat: Server Protocol", RFC
2462              2813, April 2000.
2463
2464 [SSH-TRANS]  Ylonen, T., et al, "SSH Transport Layer Protocol", 
2465              Internet Draft.
2466
2467 [PGP]        Callas, J., et al, "OpenPGP Message Format", RFC 2440,
2468              November 1998.
2469
2470 [SPKI]       Ellison C., et al, "SPKI Certificate Theory", RFC 2693,
2471              September 1999.
2472
2473 [PKIX-Part1] Housley, R., et al, "Internet X.509 Public Key 
2474              Infrastructure, Certificate and CRL Profile", RFC 2459,
2475              January 1999.
2476
2477 [Schneier]   Schneier, B., "Applied Cryptography Second Edition",
2478              John Wiley & Sons, New York, NY, 1996.
2479
2480 [Menezes]    Menezes, A., et al, "Handbook of Applied Cryptography",
2481              CRC Press 1997.
2482
2483 [OAKLEY]     Orman, H., "The OAKLEY Key Determination Protocol",
2484              RFC 2412, November 1998.
2485
2486 [ISAKMP]     Maughan D., et al, "Internet Security Association and
2487              Key Management Protocol (ISAKMP)", RFC 2408, November
2488              1998.
2489
2490 [IKE]        Harkins D., and Carrel D., "The Internet Key Exchange
2491              (IKE)", RFC 2409, November 1998.
2492
2493 [HMAC]       Krawczyk, H., "HMAC: Keyed-Hashing for Message
2494              Authentication", RFC 2104, February 1997.
2495
2496 [PKCS1]      Kalinski, B., and Staddon, J., "PKCS #1 RSA Cryptography
2497              Specifications, Version 2.0", RFC 2437, October 1998.
2498
2499 [RFC2119]    Bradner, S., "Key Words for use in RFCs to Indicate
2500              Requirement Levels", BCP 14, RFC 2119, March 1997.
2501
2502 [RFC2279]    Yergeau, F., "UTF-8, a transformation format of ISO
2503              10646", RFC 2279, January 1998.
2504
2505 [PKCS7]      Kalinski, B., "PKCS #7: Cryptographic Message Syntax,
2506              Version 1.5", RFC 2315, March 1998.
2507
2508
2509 .ti 0
2510 7 Author's Address
2511
2512 .nf
2513 Pekka Riikonen
2514 Snellmaninkatu 34 A 15
2515 70100 Kuopio
2516 Finland
2517
2518 EMail: priikone@iki.fi
2519
2520 This Internet-Draft expires 25 April 2003