Created SILC GIT repository.
[silc.git] / lib / silcmath / tfm.h
diff --git a/lib/silcmath/tfm.h b/lib/silcmath/tfm.h
deleted file mode 100644 (file)
index 677f288..0000000
+++ /dev/null
@@ -1,362 +0,0 @@
-/* TomsFastMath, a fast ISO C bignum library.
- *
- * This project is meant to fill in where LibTomMath
- * falls short.  That is speed ;-)
- *
- * This project is public domain and free for all purposes.
- *
- * Tom St Denis, tomstdenis@iahu.ca
- */
-#ifndef TFM_H_
-#define TFM_H_
-
-#include <stdio.h>
-#include <string.h>
-#include <stdlib.h>
-#include <ctype.h>
-#include <limits.h>
-
-/* Assure these -Pekka */
-#undef CRYPT
-
-#undef MIN
-#define MIN(x,y) ((x)<(y)?(x):(y))
-#undef MAX
-#define MAX(x,y) ((x)>(y)?(x):(y))
-
-/* do we want large code? */
-#define TFM_LARGE
-
-/* do we want huge code (implies large)?  The answer is, yes. */
-#define TFM_HUGE
-
-/* imply TFM_LARGE as required */
-#if defined(TFM_HUGE)
-   #if !defined(TFM_LARGE)
-      #define TFM_LARGE
-   #endif
-#endif
-
-/* Max size of any number in bits.  Basically the largest size you will be multiplying
- * should be half [or smaller] of FP_MAX_SIZE-four_digit
- *
- * You can externally define this or it defaults to 4096-bits.
- */
-#ifndef FP_MAX_SIZE
-/* For SILC -Pekka */
-   #define FP_MAX_SIZE           (8192+(4*DIGIT_BIT))
-/*   #define FP_MAX_SIZE           (4096+(4*DIGIT_BIT))*/
-#endif
-
-/* will this lib work? */
-#if (CHAR_BIT & 7)
-   #error CHAR_BIT must be a multiple of eight.
-#endif
-#if FP_MAX_SIZE % CHAR_BIT
-   #error FP_MAX_SIZE must be a multiple of CHAR_BIT
-#endif
-
-/* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */
-#if defined(__x86_64__)
-   #if defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM)
-       #error x86-64 detected, x86-32/SSE2/ARM optimizations are not valid!
-   #endif
-   #if !defined(TFM_X86_64) && !defined(TFM_NO_ASM)
-      #define TFM_X86_64
-   #endif
-#endif
-#if defined(TFM_X86_64)
-    #if !defined(FP_64BIT)
-       #define FP_64BIT
-    #endif
-#endif
-
-/* try to detect x86-32 */
-#if defined(__i386__) && !defined(TFM_SSE2)
-   #if defined(TFM_X86_64) || defined(TFM_ARM)
-       #error x86-32 detected, x86-64/ARM optimizations are not valid!
-   #endif
-   #if !defined(TFM_X86) && !defined(TFM_NO_ASM)
-      #define TFM_X86
-   #endif
-#endif
-
-/* make sure we're 32-bit for x86-32/sse/arm */
-#if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM)) && defined(FP_64BIT)
-   #warning x86-32, SSE2 and ARM optimizations require 32-bit digits (undefining)
-   #undef FP_64BIT
-#endif
-
-/* multi asms? */
-#ifdef TFM_X86
-   #define TFM_ASM
-#endif
-#ifdef TFM_X86_64
-   #ifdef TFM_ASM
-      #error TFM_ASM already defined!
-   #endif
-   #define TFM_ASM
-#endif
-#ifdef TFM_SSE2
-   #ifdef TFM_ASM
-      #error TFM_ASM already defined!
-   #endif
-   #define TFM_ASM
-#endif
-#ifdef TFM_ARM
-   #ifdef TFM_ASM
-      #error TFM_ASM already defined!
-   #endif
-   #define TFM_ASM
-#endif
-
-/* we want no asm? */
-#ifdef TFM_NO_ASM
-   #undef TFM_X86
-   #undef TFM_X86_64
-   #undef TFM_SSE2
-   #undef TFM_ARM
-   #undef TFM_ASM
-#endif
-
-/* some default configurations.
- */
-#if defined(FP_64BIT)
-   /* for GCC only on supported platforms */
-#ifndef CRYPT
-   typedef unsigned long ulong64;
-#endif
-   typedef ulong64            fp_digit;
-   typedef unsigned long      fp_word __attribute__ ((mode(TI)));
-#else
-   /* this is to make porting into LibTomCrypt easier :-) */
-#ifndef CRYPT
-   #if defined(_MSC_VER) || defined(__BORLANDC__)
-      typedef unsigned __int64   ulong64;
-      typedef signed __int64     long64;
-   #else
-      typedef unsigned long long ulong64;
-      typedef signed long long   long64;
-   #endif
-#endif
-   typedef unsigned long      fp_digit;
-   typedef ulong64            fp_word;
-#endif
-
-/* # of digits this is */
-#define DIGIT_BIT  (int)((CHAR_BIT) * sizeof(fp_digit))
-#define FP_MASK    (fp_digit)(-1)
-#define FP_SIZE    (FP_MAX_SIZE/DIGIT_BIT)
-
-/* signs */
-#define FP_ZPOS     0
-#define FP_NEG      1
-
-/* return codes */
-#define FP_OKAY     0
-#define FP_VAL      1
-#define FP_MEM      2
-
-/* equalities */
-#define FP_LT        -1   /* less than */
-#define FP_EQ         0   /* equal to */
-#define FP_GT         1   /* greater than */
-
-/* replies */
-#define FP_YES        1   /* yes response */
-#define FP_NO         0   /* no response */
-
-/* a FP type */
-typedef struct {
-    fp_digit dp[FP_SIZE];
-    int      used,
-             sign;
-} fp_int;
-
-/* functions */
-
-/* returns a TFM ident string useful for debugging... */
-const char *fp_ident(void);
-
-/* initialize [or zero] an fp int */
-#define fp_init(a)  (void)memset((a), 0, sizeof(fp_int))
-#define fp_zero(a)  fp_init(a)
-
-/* zero/even/odd ? */
-#define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO)
-#define fp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO)
-#define fp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO)
-
-/* set to a small digit */
-void fp_set(fp_int *a, fp_digit b);
-
-/* copy from a to b */
-#define fp_copy(a, b)      (void)(((a) != (b)) && memcpy((b), (a), sizeof(fp_int)))
-#define fp_init_copy(a, b) fp_copy(b, a)
-
-/* negate and absolute */
-#define fp_neg(a, b)  { fp_copy(a, b); (b)->sign ^= 1; }
-#define fp_abs(a, b)  { fp_copy(a, b); (b)->sign  = 0; }
-
-/* clamp digits */
-#define fp_clamp(a)   { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; }
-
-/* right shift x digits */
-void fp_rshd(fp_int *a, int x);
-
-/* left shift x digits */
-void fp_lshd(fp_int *a, int x);
-
-/* signed comparison */
-int fp_cmp(fp_int *a, fp_int *b);
-
-/* unsigned comparison */
-int fp_cmp_mag(fp_int *a, fp_int *b);
-
-/* power of 2 operations */
-void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d);
-void fp_mod_2d(fp_int *a, int b, fp_int *c);
-void fp_mul_2d(fp_int *a, int b, fp_int *c);
-void fp_2expt (fp_int *a, int b);
-void fp_mul_2(fp_int *a, fp_int *c);
-void fp_div_2(fp_int *a, fp_int *c);
-
-/* Counts the number of lsbs which are zero before the first zero bit */
-int fp_cnt_lsb(fp_int *a);
-
-/* c = a + b */
-void fp_add(fp_int *a, fp_int *b, fp_int *c);
-
-/* c = a - b */
-void fp_sub(fp_int *a, fp_int *b, fp_int *c);
-
-/* c = a * b */
-void fp_mul(fp_int *a, fp_int *b, fp_int *c);
-
-/* b = a*a  */
-void fp_sqr(fp_int *a, fp_int *b);
-
-/* a/b => cb + d == a */
-int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
-
-/* c = a mod b, 0 <= c < b  */
-int fp_mod(fp_int *a, fp_int *b, fp_int *c);
-
-/* compare against a single digit */
-int fp_cmp_d(fp_int *a, fp_digit b);
-
-/* c = a + b */
-void fp_add_d(fp_int *a, fp_digit b, fp_int *c);
-
-/* c = a - b */
-void fp_sub_d(fp_int *a, fp_digit b, fp_int *c);
-
-/* c = a * b */
-void fp_mul_d(fp_int *a, fp_digit b, fp_int *c);
-
-/* a/b => cb + d == a */
-int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);
-
-/* c = a mod b, 0 <= c < b  */
-int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);
-
-/* ---> number theory <--- */
-/* d = a + b (mod c) */
-int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
-
-/* d = a - b (mod c) */
-int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
-
-/* d = a * b (mod c) */
-int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
-
-/* c = a * a (mod b) */
-int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c);
-
-/* c = 1/a (mod b) */
-int fp_invmod(fp_int *a, fp_int *b, fp_int *c);
-
-/* c = (a, b) */
-void fp_gcd(fp_int *a, fp_int *b, fp_int *c);
-
-/* c = [a, b] */
-void fp_lcm(fp_int *a, fp_int *b, fp_int *c);
-
-/* setups the montgomery reduction */
-int fp_montgomery_setup(fp_int *a, fp_digit *mp);
-
-/* computes a = B**n mod b without division or multiplication useful for
- * normalizing numbers in a Montgomery system.
- */
-void fp_montgomery_calc_normalization(fp_int *a, fp_int *b);
-
-/* computes x/R == x (mod N) via Montgomery Reduction */
-void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
-
-/* d = a**b (mod c) */
-int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
-
-/* primality stuff */
-
-/* perform a Miller-Rabin test of a to the base b and store result in "result" */
-void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);
-
-/* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime  */
-int fp_isprime(fp_int *a);
-
-/* Primality generation flags */
-#define TFM_PRIME_BBS      0x0001 /* BBS style prime */
-#define TFM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
-#define TFM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
-#define TFM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
-
-/* callback for fp_prime_random, should fill dst with random bytes and return how many read [upto len] */
-typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);
-
-#define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)
-
-int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);
-
-/* radix conersions */
-int fp_count_bits(fp_int *a);
-
-int fp_unsigned_bin_size(fp_int *a);
-void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c);
-void fp_to_unsigned_bin(fp_int *a, unsigned char *b);
-
-int fp_signed_bin_size(fp_int *a);
-void fp_read_signed_bin(fp_int *a, unsigned char *b, int c);
-void fp_to_signed_bin(fp_int *a, unsigned char *b);
-
-int fp_read_radix(fp_int *a, char *str, int radix);
-int fp_toradix(fp_int *a, char *str, int radix);
-int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);
-int fp_radix_size(fp_int *a, int radix, int *size);
-
-/* VARIOUS LOW LEVEL STUFFS */
-void s_fp_add(fp_int *a, fp_int *b, fp_int *c);
-void s_fp_sub(fp_int *a, fp_int *b, fp_int *c);
-void bn_reverse(unsigned char *s, int len);
-void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C);
-#ifdef TFM_HUGE
-void fp_mul_comba32(fp_int *A, fp_int *B, fp_int *C);
-#endif
-#ifdef TFM_LARGE
-void fp_mul_comba16(fp_int *A, fp_int *B, fp_int *C);
-#endif
-void fp_mul_comba8(fp_int *A, fp_int *B, fp_int *C);
-void fp_mul_comba4(fp_int *A, fp_int *B, fp_int *C);
-
-void fp_sqr_comba(fp_int *A, fp_int *B);
-void fp_sqr_comba4(fp_int *A, fp_int *B);
-void fp_sqr_comba8(fp_int *A, fp_int *B);
-#ifdef TFM_LARGE
-void fp_sqr_comba16(fp_int *A, fp_int *B);
-#endif
-#ifdef TFM_HUGE
-void fp_sqr_comba32(fp_int *A, fp_int *B);
-void fp_sqr_comba64(fp_int *A, fp_int *B);
-#endif
-extern const char *fp_s_rmap;
-
-#endif