Created SILC Runtime Toolkit git repository Part I.
[runtime.git] / doc / draft-riikonen-silc-spec-05.nroff
diff --git a/doc/draft-riikonen-silc-spec-05.nroff b/doc/draft-riikonen-silc-spec-05.nroff
deleted file mode 100644 (file)
index e14cd82..0000000
+++ /dev/null
@@ -1,2378 +0,0 @@
-.pl 10.0i
-.po 0
-.ll 7.2i
-.lt 7.2i
-.nr LL 7.2i
-.nr LT 7.2i
-.ds LF Riikonen
-.ds RF FORMFEED[Page %]
-.ds CF
-.ds LH Internet Draft
-.ds RH 15 May 2002
-.ds CH
-.na
-.hy 0
-.in 0
-.nf
-Network Working Group                                        P. Riikonen
-Internet-Draft
-draft-riikonen-silc-spec-05.txt                              15 May 2002
-Expires: 15 November 2002
-
-.in 3
-
-.ce 3
-Secure Internet Live Conferencing (SILC),
-Protocol Specification
-<draft-riikonen-silc-spec-05.txt>
-
-.ti 0
-Status of this Memo
-
-This document is an Internet-Draft and is in full conformance with   
-all provisions of Section 10 of RFC 2026.  Internet-Drafts are   
-working documents of the Internet Engineering Task Force (IETF), its   
-areas, and its working groups.  Note that other groups may also   
-distribute working documents as Internet-Drafts.   
-
-Internet-Drafts are draft documents valid for a maximum of six months   
-and may be updated, replaced, or obsoleted by other documents at any   
-time.  It is inappropriate to use Internet-Drafts as reference   
-material or to cite them other than as "work in progress."   
-
-The list of current Internet-Drafts can be accessed at   
-http://www.ietf.org/ietf/1id-abstracts.txt   
-
-The list of Internet-Draft Shadow Directories can be accessed at   
-http://www.ietf.org/shadow.html   
-
-The distribution of this memo is unlimited.  
-
-
-.ti 0
-Abstract
-
-This memo describes a Secure Internet Live Conferencing (SILC)
-protocol which provides secure conferencing services over insecure
-network channel.  SILC is IRC [IRC] like protocol, however, it is 
-not equivalent to IRC and does not support IRC.  Strong cryptographic
-methods are used to protect SILC packets inside the SILC network.
-Three other Internet Drafts relates very closely to this memo;
-SILC Packet Protocol [SILC2], SILC Key Exchange and Authentication
-Protocols [SILC3] and SILC Commands [SILC4].
-
-
-
-
-
-
-.ti 0
-Table of Contents
-
-.nf
-1 Introduction ..................................................  3
-  1.1 Requirements Terminology ..................................  4
-2 SILC Concepts .................................................  4
-  2.1 SILC Network Topology .....................................  4
-  2.2 Communication Inside a Cell ...............................  5
-  2.3 Communication in the Network ..............................  6
-  2.4 Channel Communication .....................................  7
-  2.5 Router Connections ........................................  7
-3 SILC Specification ............................................  8
-  3.1 Client ....................................................  8
-      3.1.1 Client ID ...........................................  9
-  3.2 Server .................................................... 10
-      3.2.1 Server's Local ID List .............................. 10
-      3.2.2 Server ID ........................................... 11
-      3.2.3 SILC Server Ports ................................... 12
-  3.3 Router .................................................... 12
-      3.3.1 Router's Local ID List .............................. 13
-      3.3.2 Router's Global ID List ............................. 13
-      3.3.3 Router's Server ID .................................. 14
-  3.4 Channels .................................................. 14
-      3.4.1 Channel ID .......................................... 15
-  3.5 Operators ................................................. 16
-  3.6 SILC Commands ............................................. 16
-  3.7 SILC Packets .............................................. 17
-  3.8 Packet Encryption ......................................... 17
-      3.8.1 Determination of the Source and the Destination ..... 18
-      3.8.2 Client To Client .................................... 18
-      3.8.3 Client To Channel ................................... 20
-      3.8.4 Server To Server .................................... 20
-  3.9 Key Exchange And Authentication ........................... 20
-      3.9.1 Authentication Payload .............................. 21
-  3.10 Algorithms ............................................... 23
-      3.10.1 Ciphers ............................................ 23
-      3.10.2 Public Key Algorithms .............................. 24
-      3.10.3 Hash Functions ..................................... 24
-      3.10.4 MAC Algorithms ..................................... 25
-      3.10.5 Compression Algorithms ............................. 25
-  3.11 SILC Public Key .......................................... 26
-  3.12 SILC Version Detection ................................... 28
-  3.13 Backup Routers ........................................... 28
-      3.13.1 Switching to Backup Router ......................... 30
-      3.13.2 Resuming Primary Router ............................ 31
-      3.13.3 Discussion on Backup Router Scheme ................. 33
-4 SILC Procedures ............................................... 34
-  4.1 Creating Client Connection ................................ 34
-  4.2 Creating Server Connection ................................ 35
-      4.2.1 Announcing Clients, Channels and Servers ............ 36
-  4.3 Joining to a Channel ...................................... 37
-  4.4 Channel Key Generation .................................... 38
-  4.5 Private Message Sending and Reception ..................... 39
-  4.6 Private Message Key Generation ............................ 39
-  4.7 Channel Message Sending and Reception ..................... 40
-  4.8 Session Key Regeneration .................................. 40
-  4.9 Command Sending and Reception ............................. 41
-  4.10 Closing Connection ....................................... 42
-  4.11 Detaching and Resuming a Session ......................... 42
-5 Security Considerations ....................................... 44
-6 References .................................................... 45
-7 Author's Address .............................................. 47
-
-
-
-.ti 0
-List of Figures
-
-.nf
-Figure 1:  SILC Network Topology
-Figure 2:  Communication Inside cell
-Figure 3:  Communication Between Cells
-Figure 4:  Router Connections
-Figure 5:  SILC Public Key
-
-
-.ti 0
-1. Introduction
-
-This document describes a Secure Internet Live Conferencing (SILC)
-protocol which provides secure conferencing services over insecure
-network channel.  SILC is IRC [IRC] like protocol, however, it is 
-not equivalent to IRC and does not support IRC.  Some of the SILC's
-features are not found in IRC but in traditional Instant Message (IM)
-protocols.  SILC combines features from both of these chat protocol
-styles, and SILC can be implemented as either IRC-like system or
-IM-like system.
-
-Strong cryptographic methods are used to protect SILC packets inside
-the SILC network.  Three other Internet Drafts relates very closely
-to this memo; SILC Packet Protocol [SILC2], SILC Key Exchange and
-Authentication Protocols [SILC3] and SILC Commands [SILC4].
-
-The protocol uses extensively packets as conferencing protocol 
-requires message and command sending.  The SILC Packet Protocol is
-described in [SILC2] and should be read to fully comprehend this
-document and protocol.  [SILC2] also describes the packet encryption
-and decryption in detail.  The SILC Packet Protocol provides secured
-and authenticated packets, and the protocol is designed to be compact.
-This makes SILC also suitable in environment of low bandwidth
-requirements such as mobile networks.  All packet payloads in SILC
-can be also compressed.
-
-The security of SILC protocol, and for any security protocol for that
-matter, is based on strong and secure key exchange protocol.  The SILC
-Key Exchange protocol is described in [SILC3] along with connection
-authentication protocol and should be read to fully comprehend this
-document and protocol.
-
-The SILC protocol has been developed to work on TCP/IP network
-protocol, although it could be made to work on other network protocols
-with only minor changes.  However, it is recommended that TCP/IP
-protocol is used under SILC protocol.  Typical implementation would
-be made in client-server model.
-
-
-.ti 0
-1.1 Requirements Terminology
-
-The keywords MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, 
-MAY, and OPTIONAL, when they appear in this document, are to be
-interpreted as described in [RFC2119].
-
-
-.ti 0
-2. SILC Concepts
-
-This section describes various SILC protocol concepts that forms the 
-actual protocol, and in the end, the actual SILC network.  The mission
-of the protocol is to deliver messages from clients to other clients 
-through routers and servers in secure manner.  The messages may also 
-be delivered from one client to many clients forming a group, also 
-known as a channel.
-
-This section does not focus to security issues.  Instead, basic network 
-concepts are introduced to make the topology of the SILC network 
-clear.
-
-
-.ti 0
-2.1 SILC Network Topology
-
-SILC network is a cellular network as opposed to tree style network 
-topology.  The rationale for this is to have servers that can perform 
-specific kind of tasks what other servers cannot perform.  This leads 
-to two kinds of servers; normal SILC servers and SILC routers.
-
-A difference between normal server and router server is that routers 
-knows everything about everything in the network.  They also do the 
-actual routing of the messages to the correct receiver.  Normal servers 
-knows only about local information and nothing about global information.
-This makes the network faster as there are less servers that needs to 
-keep global information up to date at all time.
-
-This, on the other hand, leads to cellular like network, where routers 
-are in the center of the cell and servers are connected to the router.
-
-
-The following diagram represents SILC network topology.
-
-.in 8
-.nf
-  ---- ---- ----         ---- ---- ----
- | S8 | S5 | S4 |       | S7 | S5 | S6 |
- ----- ---- -----       ----- ---- -----
-| S7 | S/R1 | S2 | --- | S8 | S/R2 | S4 |
- ---- ------ ----       ---- ------ ----
- | S6 | S3 | S1 |       | S1 | S3 | S2 |         ---- ----
-  ---- ---- ----         ---- ---- ----         | S3 | S1 |
-     Cell 1.   \\             Cell 2.  | \\____  ----- -----
-                |                     |        | S4 | S/R4 |
-    ---- ---- ----         ---- ---- ----       ---- ------
-   | S7 | S4 | S2 |       | S1 | S3 | S2 |      | S2 | S5 |
-   ----- ---- -----       ----- ---- -----       ---- ----
-  | S6 | S/R3 | S1 | --- | S4 | S/R5 | S5 | ____/ Cell 4.
-   ---- ------ ----       ---- ------ ----
-   | S8 | S5 | S3 |       | S6 | S7 | S8 |     ... etc ...
-    ---- ---- ----         ---- ---- ----
-       Cell 3.                Cell 5.
-.in 3
-
-.ce
-Figure 1:  SILC Network Topology
-
-
-A cell is formed when a server or servers connect to one router.  In
-SILC network normal server cannot directly connect to other normal
-server.  Normal server may only connect to SILC router which then
-routes the messages to the other servers in the cell.  Router servers
-on the other hand may connect to other routers to form the actual SILC 
-network, as seen in above figure.  However, router is also normal SILC 
-server; clients may connect to it the same way as to normal SILC 
-server.  Normal server also cannot have active connections to more 
-than one router.  Normal server cannot be connected to two different 
-cells.  Router servers, on the other hand, may have as many router to 
-router connections as needed.
-
-There are many issues in this network topology that needs to be careful
-about.  Issues like the size of the cells, the number of the routers in 
-the SILC network and the capacity requirements of the routers.  These
-issues should be discussed in the Internet Community and additional
-documents on the issue may be written.
-
-
-.ti 0
-2.2 Communication Inside a Cell
-
-It is always guaranteed that inside a cell message is delivered to the 
-recipient with at most two server hops.  A client which is connected to
-server in the cell and is talking on channel to other client connected 
-to other server in the same cell, will have its messages delivered from 
-its local server first to the router of the cell, and from the router 
-to the other server in the cell.
-
-The following diagram represents this scenario:
-
-
-.in 25
-.nf
-1 --- S1     S4 --- 5
-         S/R
- 2 -- S2     S3
-     /        |
-    4         3
-.in 3
-
-
-.ce
-Figure 2:  Communication Inside cell
-
-
-Example:  Client 1. connected to Server 1. send message to
-          Client 4. connected to Server 2. travels from Server 1.
-          first to Router which routes the message to Server 2.
-          which then sends it to the Client 4.  All the other
-          servers in the cell will not see the routed message.
-
-
-If the client is connected directly to the router, as router is also normal
-SILC server, the messages inside the cell are always delivered only with 
-one server hop.  If clients communicating with each other are connected 
-to the same server, no router interaction is needed.  This is the optimal
-situation of message delivery in the SILC network.
-
-
-.ti 0
-2.3 Communication in the Network
-
-If the message is destined to server that does not belong to local cell 
-the message is routed to the router server to which the destination 
-server belongs, if the local router is connected to destination router.
-If there is no direct connection to the destination router, the local
-router routes the message to its primary route.  The following diagram
-represents message sending between cells.
-
-
-
-
-
-.in 16
-.nf
-1 --- S1     S4 --- 5            S2 --- 1
-         S/R - - - - - - - - S/R
- 2 -- S2     S3           S1
-     /        |             \\
-    4         3              2
-
-   Cell 1.               Cell 2.
-.in 3
-
-
-.ce
-Figure 3:  Communication Between Cells
-
-
-Example:  Client 5. connected to Server 4. in Cell 1. sends message
-          to Client 2. connected to Server 1. in Cell 2. travels
-          from Server 4. to Router which routes the message to
-          Router in Cell 2, which then routes the message to 
-          Server 1.  All the other servers and routers in the
-          network will not see the routed message.
-
-
-The optimal case of message delivery from the client point of view is
-when clients are connected directly to the routers and the messages
-are delivered from one router to the other.
-
-
-.ti 0 
-2.4 Channel Communication
-
-Messages may be sent to group of clients as well.  Sending messages to
-many clients works the same way as sending messages point to point, from
-message delivery point of view.  Security issues are another matter
-which are not discussed in this section.
-
-Router server handles the message routing to multiple recipients.  If 
-any recipient is not in the same cell as the sender the messages are 
-routed further.
-
-Server distributes the channel message to its local clients which are 
-joined to the channel.  Router also distributes the message to its 
-local clients on the channel.
-
-
-.ti 0
-2.5 Router Connections
-
-Router connections play very important role in making the SILC like
-network topology to work.  For example, sending broadcast packets in
-SILC network require special connections between routers; routers must
-be connected in a specific way.
-
-Every router has their primary route which is a connection to another
-router in the network.  Unless there is only two routers in the network
-must not routers use each other as their primary routes.  The router
-connections in the network must form a ring.
-
-Example with three routers in the network:
-
-
-.in 16
-.nf
-    S/R1 - < - < - < - < - < - < - S/R2
-     \\                               /
-      v                             ^
-       \\ - > -  > - S/R3 - > - > - /
-.in 3
-
-
-.ce
-Figure 4:  Router Connections
-
-
-Example:  Network with three routers.  Router 1. uses Router 2. as its
-          primary router.  Router 2. uses Router 3. as its primary router,
-          and Router 3. uses Router 1. as its primary router.  There may
-          be other direct connections between the routers but they must
-          not be used as primary routes.
-
-The above example is applicable to any amount of routers in the network
-except for two routers.  If there are only two routers in the network both
-routers must be able to handle situation where they use each other as their
-primary routes.
-
-The issue of router connections are very important especially with SILC
-broadcast packets.  Usually all router wide information in the network is
-distributed by SILC broadcast packets.  This sort of ring network, with
-ability to have other direct routes in the network cause interesting
-routing problems.  The [SILC2] discusses the routing of packets in this
-sort of network in more detail.
-
-
-.ti 0
-3. SILC Specification
-
-This section describes the SILC protocol.  However, [SILC2] and
-[SILC3] describes other important protocols that are part of this SILC
-specification and must be read.
-
-
-.ti 0
-3.1 Client
-
-A client is a piece of software connecting to SILC server.  SILC client 
-cannot be SILC server.  Purpose of clients is to provide the user 
-interface of the SILC services for end user.  Clients are distinguished
-from other clients by unique Client ID.  Client ID is a 128 bit ID that
-is used in the communication in the SILC network.  The client ID is 
-based on the nickname selected by the user.  User uses logical nicknames
-in communication which are then mapped to the corresponding Client ID.
-Client ID's are low level identifications and must not be seen by the
-end user.
-
-Clients provide other information about the end user as well. Information
-such as the nickname of the user, username and the host name of the end 
-user and user's real name.  See section 3.2 Server for information of 
-the requirements of keeping this information.
-
-The nickname selected by the user is not unique in the SILC network.
-There can be 2^8 same nicknames for one IP address.  As for comparison
-to IRC [IRC] where nicknames are unique this is a fundamental difference
-between SILC and IRC.  This causes the server names or client's host names
-to be used along with the nicknames to identify specific users when sending
-messages.  This feature of SILC makes IRC style nickname-wars obsolete as
-no one owns their nickname; there can always be someone else with the same
-nickname.  The maximum length of nickname is 128 bytes.
-
-
-.ti 0
-3.1.1 Client ID
-
-Client ID is used to identify users in the SILC network.  The Client ID
-is unique to the extent that there can be 2^128 different Client ID's,
-and ID's based on IPv6 addresses extends this to 2^224 different Client
-ID's.  Collisions are not expected to happen.  The Client ID is defined
-as follows.
-
-
-
-.in 6
-128 bit Client ID based on IPv4 addresses:
-
-32 bit  Server ID IP address (bits 1-32)
- 8 bit  Random number or counter
-88 bit  Truncated MD5 hash value of the nickname
-
-224 bit Client ID based on IPv6 addresses:
-
-128 bit  Server ID IP address (bits 1-128)
-  8 bit  Random number or counter
- 88 bit  Truncated MD5 hash value of the nickname
-
-o Server ID IP address - Indicates the server where this
-  client is coming from.  The IP address hence equals the
-  server IP address where to the client has connected.
-
-o Random number or counter - Random number to further 
-  randomize the Client ID.  Another choice is to use
-  a counter starting from the zero (0).  This makes it
-  possible to have 2^8 same nicknames from the same
-  server IP address.
-
-o MD5 hash - MD5 hash value of the lowercase nickname is
-  truncated taking 88 bits from the start of the hash value.
-  This hash value is used to search the user's Client ID
-  from the ID lists.  Note that the nickname MUST be in
-  lowercase format.
-
-.in 3
-Collisions could occur when more than 2^8 clients using same nickname
-from the same server IP address is connected to the SILC network.  
-Server MUST be able to handle this situation by refusing to accept 
-anymore of that nickname.
-
-Another possible collision may happen with the truncated hash value of
-the nickname.  It could be possible to have same truncated hash value for
-two different nicknames.  However, this is not expected to happen nor
-cause any problems if it would occur.  Nicknames are usually logical and
-it is unlikely to have two distinct logical nicknames produce same
-truncated hash value.
-
-
-.ti 0
-3.2 Server
-
-Servers are the most important parts of the SILC network.  They form the
-basis of the SILC, providing a point to which clients may connect to.
-There are two kinds of servers in SILC; normal servers and router servers.
-This section focus on the normal server and router server is described
-in the section 3.3 Router.
-
-Normal servers MUST NOT directly connect to other normal server.  Normal
-servers may only directly connect to router server.  If the message sent
-by the client is destined outside the local server it is always sent to
-the router server for further routing.  Server may only have one active
-connection to router on same port.  Normal server MUST NOT connect to other
-cell's router except in situations where its cell's router is unavailable.
-
-
-.ti 0
-3.2.1 Server's Local ID List
-
-Normal server keeps various information about the clients and their end
-users connected to it.  Every normal server MUST keep list of all locally
-connected clients, Client ID's, nicknames, usernames and host names and
-user's real name.  Normal servers only keeps local information and it
-does not keep any global information.  Hence, normal servers knows only
-about their locally connected clients.  This makes servers efficient as
-they don't have to worry about global clients.  Server is also responsible
-of creating the Client ID's for their clients.
-
-Normal server also keeps information about locally created channels and
-their Channel ID's.
-
-
-Hence, local list for normal server includes:
-
-.in 6
-server list        - Router connection
-   o Server name
-   o Server IP address
-   o Server ID
-   o Sending key
-   o Receiving key
-   o Public key
-
-client list        - All clients in server
-   o Nickname
-   o Username@host
-   o Real name
-   o Client ID
-   o Sending key
-   o Receiving key
-   o Public key
-
-
-channel list       - All channels in server
-   o Channel name
-   o Channel ID
-   o Client ID's on channel
-   o Client ID modes on channel
-   o Channel key
-.in 3
-
-
-.ti 0
-3.2.2 Server ID
-
-Servers are distinguished from other servers by unique 64 bit Server ID 
-(for IPv4) or 160 bit Server ID (for IPv6).  The Server ID is used in
-the SILC to route messages to correct servers.  Server ID's also provide
-information for Client ID's, see section 3.1.1 Client ID.  Server ID is
-defined as follows.
-
-.in 6
-64 bit Server ID based on IPv4 addresses:
-
-32 bit  IP address of the server
-16 bit  Port
-16 bit  Random number
-
-160 bit Server ID based on IPv6 addresses:
-
-128 bit  IP address of the server
- 16 bit  Port
- 16 bit  Random number
-
-o IP address of the server - This is the real IP address of
-  the server.
-
-o Port - This is the port the server is bound to.
-
-o Random number - This is used to further randomize the Server ID.
-
-.in 3
-Collisions are not expected to happen in any conditions.  The Server ID
-is always created by the server itself and server is responsible of
-distributing it to the router.
-
-
-.ti 0
-3.2.3 SILC Server Ports
-
-The following ports has been assigned by IANA for the SILC protocol:
-
-.in 10
-silc            706/tcp    SILC
-silc            706/udp    SILC
-.in 3
-
-
-If there are needs to create new SILC networks in the future the port
-numbers must be officially assigned by the IANA.
-
-Server on network above privileged ports (>1023) SHOULD NOT be trusted
-as they could have been set up by untrusted party.
-
-
-.ti 0
-3.3 Router
-
-Router server in SILC network is responsible for keeping the cell together
-and routing messages to other servers and to other routers.  Router server
-is also a normal server thus clients may connect to it as it would be
-just normal SILC server.
-
-However, router servers has a lot of important tasks that normal servers
-do not have.  Router server knows everything about everything in the SILC.
-They know all clients currently on SILC, all servers and routers and all
-channels in SILC.  Routers are the only servers in SILC that care about
-global information and keeping them up to date at all time.  And, this
-is what they must do.
-
-
-.ti 0
-3.3.1 Router's Local ID List
-
-Router server as well MUST keep local list of connected clients and
-locally created channels.  However, this list is extended to include all
-the informations of the entire cell, not just the server itself as for
-normal servers.
-
-However, on router this list is a lot smaller since routers do not need
-to keep information about user's nickname, username and host name and real
-name since these are not needed by the router.  The router keeps only
-information that it needs.
-
-
-Hence, local list for router includes:
-
-.in 6
-server list        - All servers in the cell
-   o Server name
-   o Server ID
-   o Router's Server ID
-   o Sending key
-   o Receiving key
-
-client list        - All clients in the cell
-   o Client ID
-
-
-channel list       - All channels in the cell
-   o Channel ID
-   o Client ID's on channel
-   o Client ID modes on channel
-   o Channel key
-.in 3
-
-
-Note that locally connected clients and other information include all the
-same information as defined in section section 3.2.1 Server's Local ID
-List.
-
-
-.ti 0
-3.3.2 Router's Global ID List
-
-Router server MUST also keep global list.  Normal servers do not have
-global list as they know only about local information.  Global list
-includes all the clients on SILC, their Client ID's, all created channels
-and their Channel ID's and all servers and routers on SILC and their
-Server ID's.  That is said, global list is for global information and the
-list must not include the local information already on the router's local
-list.
-
-Note that the global list does not include information like nicknames,
-usernames and host names or user's real names.  Router does not need to
-keep these informations as they are not needed by the router.  This 
-information is available from the client's server which maybe queried
-when needed.
-
-Hence, global list includes:
-
-.in 6
-server list        - All servers in SILC
-   o Server name
-   o Server ID
-   o Router's Server ID
-
-client list        - All clients in SILC
-   o Client ID
-
-channel list       - All channels in SILC
-   o Channel ID
-   o Client ID's on channel
-   o Client ID modes on channel
-.in 3
-
-
-
-.ti 0
-3.3.3 Router's Server ID
-
-Router's Server ID's are equivalent to normal Server ID's.  As routers
-are normal servers as well same types of ID's applies for routers as well.
-Thus, see section 3.2.2 Server ID.
-
-
-.ti 0
-3.4 Channels
-
-A channel is a named group of one or more clients which will all receive
-messages addressed to that channel.  The channel is created when first
-client requests JOIN command to the channel, and the channel ceases to
-exist when the last client has left it.  When channel exists, any client
-can reference it using the name of the channel.  If the channel has
-a founder mode set and last client leaves the channel the channel does
-not cease to exist.  The founder mode can be used to make permanent
-channels in the network.  The founder of the channel can regain the
-channel founder privileges on the channel later when he joins the
-channel.
-
-Channel names are unique although the real uniqueness comes from 64 bit
-Channel ID.  However, channel names are still unique and no two global
-channels with same name may exist.  The channel name is a string of
-maximum length of 256 bytes.  Channel names MUST NOT contain any
-whitespaces (`  '), any non-printable ASCII characters, commas (`,')
-and wildcard characters.
-
-Channels can have operators that can administrate the channel and
-operate all of its modes.  The following operators on channel exist on
-the SILC network.
-
-.in 6
-o Channel founder - When channel is created the joining client becomes
-  channel founder.  Channel founder is channel operator with some more
-  privileges.  Basically, channel founder can fully operate the channel
-  and all of its modes.  The privileges are limited only to the
-  particular channel.  There can be only one channel founder per
-  channel. Channel founder supersedes channel operator's privileges.
-
-  Channel founder privileges cannot be removed by any other operator on
-  channel.  When channel founder leaves the channel there is no channel
-  founder on the channel.  However, it is possible to set a mode for
-  the channel which allows the original channel founder to regain the
-  founder privileges even after leaving the channel.  Channel founder
-  also cannot be removed by force from the channel.
-
-o Channel operator - When client joins to channel that has not existed
-  previously it will become automatically channel operator (and channel
-  founder discussed above).  Channel operator is able administrate the
-  channel, set some modes on channel, remove a badly behaving client
-  from the channel and promote other clients to become channel
-  operator.  The privileges are limited only to the particular channel.
-
-  Normal channel user may be promoted (opped) to channel operator
-  gaining channel operator privileges.  Channel founder or other
-  channel operator may also demote (deop) channel operator to normal
-  channel user.
-.in 3
-
-
-.ti 0
-3.4.1 Channel ID
-
-Channels are distinguished from other channels by unique Channel ID.
-The Channel ID is a 64 bit ID (for IPv4) or 160 bit ID (for IPv6), and
-collisions are not expected to happen in any conditions.  Channel names
-are just for logical use of channels.  The Channel ID is created by the
-server where the channel is created.  The Channel ID is defined as
-follows.
-
-.in 6
-64 bit Channel ID based on IPv4 addresses:
-
-32 bit  Router's Server ID IP address (bits 1-32)
-16 bit  Router's Server ID port (bits 33-48)
-16 bit  Random number
-
-160 bit Channel ID based on IPv6 addresses:
-
-128 bit  Router's Server ID IP address (bits 1-128)
- 16 bit  Router's Server ID port (bits 129-144)
- 16 bit  Random number
-
-o Router's Server ID IP address - Indicates the IP address of 
-  the router of the cell where this channel is created.  This is 
-  taken from the router's Server ID.  This way SILC router knows 
-  where this channel resides in the SILC network.
-
-o Router's Server ID port - Indicates the port of the channel on 
-  the server.  This is taken from the router's Server ID.
-
-o Random number - To further randomize the Channel ID.  This makes
-  sure that there are no collisions.  This also means that
-  in a cell there can be 2^16 channels.
-.in 3
-
-
-.ti 0
-3.5 Operators
-
-Operators are normal users with extra privileges to their server or
-router.  Usually these people are SILC server and router administrators
-that take care of their own server and clients on them.  The purpose of
-operators is to administrate the SILC server or router.  However, even
-an operator with highest privileges is not able to enter invite-only
-channel, to gain access to the contents of a encrypted and authenticated
-packets traveling in the SILC network or to gain channel operator
-privileges on public channels without being promoted.  They have the
-same privileges as everyone else except they are able to administrate
-their server or router.
-
-
-.ti 0
-3.6 SILC Commands
-
-Commands are very important part on SILC network especially for client
-which uses commands to operate on the SILC network.  Commands are used
-to set nickname, join to channel, change modes and many other things.
-
-Client usually sends the commands and server replies by sending a reply
-packet to the command.  Server MAY also send commands usually to serve
-the original client's request.  Usually server cannot send commands to
-clients, however there MAY be commands that allow the server to send
-commands to client.  By default servers MAY send commands only to other
-servers and routers.
-
-Note that the command reply is usually sent only after client has sent
-the command request but server is allowed to send command reply packet
-to client even if client has not requested the command.  Client MAY
-choose to ignore the command reply.
-
-It is expected that some of the commands may be miss-used by clients
-resulting various problems on the server side.  Every implementation
-SHOULD assure that commands may not be executed more than once, say,
-in two (2) seconds.  However, to keep response rate up, allowing for
-example five (5) commands before limiting is allowed.  It is RECOMMENDED
-that commands such as SILC_COMMAND_NICK, SILC_COMMAND_JOIN, 
-SILC_COMMAND_LEAVE and SILC_COMMAND_KILL SHOULD be limited in all cases
-as they require heavy operations.  This should be sufficient to prevent
-the miss-use of commands.
-
-SILC commands are described in [SILC4].
-
-
-.ti 0
-3.7 SILC Packets
-
-Packets are naturally the most important part of the protocol and the
-packets are what actually makes the protocol.  Packets in SILC network
-are always encrypted using, usually the shared secret session key
-or some other key, for example, channel key, when encrypting channel
-messages.  It is not possible to send packet in SILC network without
-encryption.  The SILC Packet Protocol is a wide protocol and is described
-in [SILC2].  This document does not define or describe details of
-SILC packets.
-
-
-.ti 0
-3.8 Packet Encryption
-
-All packets passed in SILC network MUST be encrypted.  This section
-defines how packets must be encrypted in the SILC network.  The detailed
-description of the actual encryption process of the packets are
-described in [SILC2].
-
-Client and its server shares secret symmetric session key which is
-established by the SILC Key Exchange Protocol, described in [SILC3]. 
-Every packet sent from client to server, with exception of packets for
-channels, are encrypted with this session key.
-
-Channels has a channel key that are shared by every client on the channel.
-However, the channel keys are cell specific thus one cell does not know
-the channel key of the other cell, even if that key is for same channel.
-Channel key is also known by the routers and all servers that has clients
-on the channel.  However, channels MAY have channel private keys that
-are entirely local setting for the client.  All clients on the channel
-MUST know the channel private key before hand to be able to talk on the
-channel.  In this case, no server or router know the key for channel.
-
-Server shares secret symmetric session key with router which is
-established by the SILC Key Exchange Protocol.  Every packet passed from
-server to router, with exception of packets for channels, are encrypted
-with the shared session key.  Same way, router server shares secret
-symmetric key with its primary route.  However, every packet passed
-from router to other router, including packets for channels, are
-encrypted with the shared session key.  Every router connection has
-their own session keys.
-
-
-.ti 0
-3.8.1 Determination of the Source and the Destination
-
-The source and the destination of the packet needs to be determined
-to be able to route the packets to correct receiver.  This information
-is available in the SILC Packet Header which is included in all packets
-sent in SILC network.  The SILC Packet Header is described in [SILC2].
-
-The header MUST be encrypted with the session key who is next receiver
-of the packet along the route.  The receiver of the packet, for example
-a router along the route, is able to determine the sender and the
-destination of the packet by decrypting the SILC Packet Header and
-checking the ID's attached to the header.  The ID's in the header will
-tell to where the packet needs to be sent and where it is coming from.
-
-The header in the packet MUST NOT change during the routing of the
-packet.  The original sender, for example client, assembles the packet
-and the packet header and server or router between the sender and the
-receiver MUST NOT change the packet header.  Note however, that some
-packets such as commands may resent by a server to serve the client's
-original command.  In this case the command packet send by the server
-includes the server's IDs.
-
-Note that the packet and the packet header may be encrypted with
-different keys.  For example, packets to channels are encrypted with
-the channel key, however, the header is encrypted with the session key
-as described above.  However, the header and the packet may be encrypted
-with same key.  This is the case, for example, with command packets.
-
-
-.ti 0
-3.8.2 Client To Client
-
-The process of message delivery and encryption from client to another
-client is as follows.
-
-Example:  Private message from client to another client on different
-          servers.  Clients do not share private message delivery
-          keys; normal session keys are used.
-
-o Client 1. sends encrypted packet to its server.  The packet is
-  encrypted with the session key shared between client and its
-  server.
-
-o Server determines the destination of the packet and decrypts
-  the packet.  Server encrypts the packet with session key shared
-  between the server and its router, and sends the packet to the
-  router.
-
-o Router determines the destination of the packet and decrypts
-  the packet.  Router encrypts the packet with session key 
-  shared between the router and the destination server, and sends
-  the packet to the server.
-
-o Server determines the client to which the packet is destined
-  to and decrypts the packet.  Server encrypts the packet with
-  session key shared between the server and the destination client,
-  and sends the packet to the client.
-
-o Client 2. decrypts the packet.
-
-
-Example:  Private message from client to another client on different
-          servers.  Clients has established secret shared private
-          message delivery key with each other and that is used in 
-          the message encryption.
-
-o Client 1. sends encrypted packet to its server.  The packet header
-  is encrypted with the session key shared between the client and
-  server, and the private message is encrypted with the private
-  message delivery key shared between clients.
-
-o Server determines the destination of the packet and sends the 
-  packet to the router.
-
-o Router determines the destination of the packet and sends the
-  packet to the server.
-
-o Server determines the client to which the packet is destined
-  to and sends the packet to the client.
-
-o Client 2. decrypts the packet with the secret shared key.
-
-
-If clients share secret key with each other the private message
-delivery is much simpler since servers and routers between the
-clients do not need to decrypt and re-encrypt the packet.
-
-The process for clients on same server is much simpler as there are
-no need to send the packet to the router.  The process for clients 
-on different cells is same as above except that the packet is routed 
-outside the cell.  The router of the destination cell routes the 
-packet to the destination same way as described above.
-
-
-.ti 0
-3.8.3 Client To Channel
-
-Process of message delivery from client on channel to all the clients
-on the channel.
-
-Example:  Channel of four users; two on same server, other two on
-          different cells.  Client sends message to the channel.
-
-o Client 1. encrypts the packet with channel key and sends the
-  packet to its server.
-
-o Server determines local clients on the channel and sends the
-  packet to the Client on the same server.  Server then sends
-  the packet to its router for further routing.
-
-o Router determines local clients on the channel, if found
-  sends packet to the local clients.  Router determines global
-  clients on the channel and sends the packet to its primary
-  router or fastest route.
-
-o (Other router(s) do the same thing and sends the packet to
-   the server(s))
-
-o Server determines local clients on the channel and sends the
-  packet to the client.
-
-o All clients receiving the packet decrypts the packet.
-
-
-.ti 0
-3.8.4 Server To Server
-
-Server to server packet delivery and encryption is described in above
-examples. Router to router packet delivery is analogous to server to
-server.  However, some packets, such as channel packets, are processed
-differently.  These cases are described later in this document and
-more in detail in [SILC2].
-
-
-.ti 0
-3.9 Key Exchange And Authentication
-
-Key exchange is done always when for example client connects to server
-but also when server and router, and router and router connects to each
-other.  The purpose of key exchange protocol is to provide secure key
-material to be used in the communication.  The key material is used to
-derive various security parameters used to secure SILC packets.  The
-SILC Key Exchange protocol is described in detail in [SILC3].
-
-Authentication is done after key exchange protocol has been successfully
-completed.  The purpose of authentication is to authenticate for example
-client connecting to the server.  However, usually clients are accepted
-to connect to server without explicit authentication.  Servers are
-required use authentication protocol when connecting.  The authentication
-may be based on passphrase (pre-shared-secret) or public key.  All
-passphrases sent in SILC protocol MUST be UTF-8 [RFC2279] encoded.
-The connection authentication protocol is described in detail in [SILC3].
-
-
-.ti 0
-3.9.1 Authentication Payload
-
-Authentication payload is used separately from the SKE and the Connection
-Authentication protocol.  It can be used during the session to authenticate
-with the remote.  For example, the client can authenticate itself to the
-server to become server operator.  In this case, Authentication Payload is
-used.
-
-The format of the Authentication Payload is as follows:
-
-
-.in 5
-.nf
-                     1                   2                   3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|        Payload Length         |     Authentication Method     |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|      Public Data Length       |                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
-|                                                               |
-~                           Public Data                         ~
-|                                                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|   Authentication Data Length  |                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
-|                                                               |
-~                       Authentication Data                     ~
-|                                                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-.in 3
-.ce
-Figure 5:  Authentication Payload
-
-
-.in 6
-o Payload Length (2 bytes) - Length of the entire payload.
-
-o Authentication Method (2 bytes) - The method of the
-  authentication.  The authentication methods are defined
-  in [SILC2] in the Connection Auth Request Payload.  The NONE 
-  authentication method SHOULD NOT be used.
-
-o Public Data Length (2 bytes) - Indicates the length of
-  the Public Data field.
-
-o Public Data (variable length) - This is defined only if
-  the authentication method is public key.  If it is any other
-  this field MAY include a random data for padding purposes.
-  However, in this case the field MUST be ignored by the
-  receiver.
-
-  When the authentication method is public key this includes
-  128 to 4096 bytes of non-zero random data that is used in
-  the signature process, described subsequently.
-
-o Authentication Data Length (2 bytes) - Indicates the
-  length of the Authentication Data field.  If zero (0)
-  value is found in this field the payload MUST be 
-  discarded.
-
-o Authentication Data (variable length) - Authentication 
-  method dependent authentication data.
-.in 3
-
-
-If the authentication method is password based, the Authentication
-Data field includes the plaintext UTF-8 encoded password.  It is safe
-to send plaintext password since the entire payload is encrypted.  In
-this case the Public Data Length is set to zero (0), but MAY also include
-random data for padding purposes.  It is also RECOMMENDED that maximum
-amount of padding is applied to SILC packet when using password based
-authentication.  This way it is not possible to approximate the length
-of the password from the encrypted packet.
-
-If the authentication method is public key based (or certificate)
-the Authentication Data is computed as follows:
-
-  HASH = hash(random bytes | ID | public key (or certificate));
-  Authentication Data = sign(HASH);
-
-The hash() and the sign() are the hash function and the public key
-cryptography function selected in the SKE protocol, unless otherwise
-stated in the context where this payload is used.  The public key
-is SILC style public key unless certificates are used.  The ID is the
-entity's ID (Client or Server ID) which is authenticating itself.  The
-ID encoding is described in [SILC2].  The random bytes are non-zero
-random bytes of length between 128 and 4096 bytes, and will be included
-into the Public Data field as is.
-
-The receiver will compute the signature using the random data received
-in the payload, the ID associated to the connection and the public key
-(or certificate) received in the SKE protocol.  After computing the
-receiver MUST verify the signature.  In case of public key authentication
-this payload is also encrypted.
-
-
-.ti 0
-3.10 Algorithms
-
-This section defines all the allowed algorithms that can be used in
-the SILC protocol.  This includes mandatory cipher, mandatory public
-key algorithm and MAC algorithms.
-
-
-.ti 0
-3.10.1 Ciphers
-
-Cipher is the encryption algorithm that is used to protect the data
-in the SILC packets.  See [SILC2] of the actual encryption process and
-definition of how it must be done.  SILC has a mandatory algorithm that
-must be supported in order to be compliant with this protocol.
-
-The following ciphers are defined in SILC protocol:
-
-.in 6
-aes-256-cbc         AES in CBC mode, 256 bit key       (REQUIRED)
-aes-192-cbc         AES in CBC mode, 192 bit key       (OPTIONAL)
-aes-128-cbc         AES in CBC mode, 128 bit key       (OPTIONAL)
-twofish-256-cbc     Twofish in CBC mode, 256 bit key   (OPTIONAL)
-twofish-192-cbc     Twofish in CBC mode, 192 bit key   (OPTIONAL)
-twofish-128-cbc     Twofish in CBC mode, 128 bit key   (OPTIONAL)
-blowfish-128-cbc    Blowfish in CBC mode, 128 bit key  (OPTIONAL)
-cast-256-cbc        CAST-256 in CBC mode, 256 bit key  (OPTIONAL)
-cast-192-cbc        CAST-256 in CBC mode, 192 bit key  (OPTIONAL)
-cast-128-cbc        CAST-256 in CBC mode, 128 bit key  (OPTIONAL)
-rc6-256-cbc         RC6 in CBC mode, 256 bit key       (OPTIONAL)
-rc6-192-cbc         RC6 in CBC mode, 192 bit key       (OPTIONAL)
-rc6-128-cbc         RC6 in CBC mode, 128 bit key       (OPTIONAL)
-mars-256-cbc        Mars in CBC mode, 256 bit key      (OPTIONAL)
-mars-192-cbc        Mars in CBC mode, 192 bit key      (OPTIONAL)
-mars-128-cbc        Mars in CBC mode, 128 bit key      (OPTIONAL)
-none                No encryption                      (OPTIONAL)
-.in 3
-
-
-Algorithm none does not perform any encryption process at all and 
-thus is not recommended to be used.  It is recommended that no client
-or server implementation would accept none algorithms except in special
-debugging mode.
-
-Additional ciphers MAY be defined to be used in SILC by using the
-same name format as above.
-
-
-.ti 0
-3.10.2 Public Key Algorithms
-
-Public keys are used in SILC to authenticate entities in SILC network
-and to perform other tasks related to public key cryptography.  The 
-public keys are also used in the SILC Key Exchange protocol [SILC3].
-
-The following public key algorithms are defined in SILC protocol:
-
-.in 6
-rsa        RSA  (REQUIRED)
-dss        DSS  (OPTIONAL)
-.in 3
-
-DSS is described in [Menezes].  The RSA MUST be implemented according
-PKCS #1 [PKCS1].  The mandatory PKCS #1 implementation in SILC MUST be
-compliant to either PKCS #1 version 1.5 or newer with the following
-notes: The signature encoding is always in same format as the encryption
-encoding regardless of the PKCS #1 version.  The signature with appendix
-(with hash algorithm OID in the data) MUST NOT be used in the SILC.  The
-rationale for this is that there is no binding between the PKCS #1 OIDs
-and the hash algorithms used in the SILC protocol.  Hence, the encoding
-is always in PKCS #1 version 1.5 format.
-
-Additional public key algorithms MAY be defined to be used in SILC.
-
-When signatures are computed in SILC the computing of the signature is
-represented as sign().  The signature computing procedure is dependent
-of the public key algorithm, and the public key or certificate encoding.
-When using SILC public key the signature is computed as described in
-previous section for RSA and DSS keys.  When using SSH2 public keys
-the signature is computed as described in [SSH-TRANS].  When using
-X.509 version 3 certificates the signature is computed as described
-in [PKCS7].  When using OpenPGP certificates the signature is computed
-as described in [PGP].
-
-
-.ti 0
-3.10.3 Hash Functions
-
-Hash functions are used as part of MAC algorithms defined in the next
-section.  They are also used in the SILC Key Exchange protocol defined
-in the [SILC3].
-
-The following Hash algorithm are defined in SILC protocol:
-
-.in 6
-sha1             SHA-1, length = 20      (REQUIRED)
-md5              MD5, length = 16        (OPTIONAL)
-.in 3
-
-
-.ti 0
-3.10.4 MAC Algorithms
-
-Data integrity is protected by computing a message authentication code
-(MAC) of the packet data.  See [SILC2] for details how to compute the
-MAC.
-
-The following MAC algorithms are defined in SILC protocol:
-
-.in 6
-hmac-sha1-96     HMAC-SHA1, length = 12  (REQUIRED)
-hmac-md5-96      HMAC-MD5, length = 12   (OPTIONAL)
-hmac-sha1        HMAC-SHA1, length = 20  (OPTIONAL)
-hmac-md5         HMAC-MD5, length = 16   (OPTIONAL)
-none             No MAC                  (OPTIONAL)
-.in 3
-
-The none MAC is not recommended to be used as the packet is not
-authenticated when MAC is not computed.  It is recommended that no
-client or server would accept none MAC except in special debugging
-mode.
-
-The HMAC algorithm is described in [HMAC] and hash algorithms that
-are used as part of the HMACs are described in [Scheneir] and in
-[Menezes]
-
-Additional MAC algorithms MAY be defined to be used in SILC.
-
-
-
-
-.ti 0
-3.10.5 Compression Algorithms
-
-SILC protocol supports compression that may be applied to unencrypted
-data.  It is recommended to use compression on slow links as it may
-significantly speed up the data transmission.  By default, SILC does not
-use compression which is the mode that must be supported by all SILC
-implementations.
-
-The following compression algorithms are defined:
-
-.in 6
-none        No compression               (REQUIRED)
-zlib        GNU ZLIB (LZ77) compression  (OPTIONAL)
-.in 3
-
-Additional compression algorithms MAY be defined to be used in SILC.
-
-
-.ti 0
-3.11 SILC Public Key
-
-This section defines the type and format of the SILC public key.  All
-implementations MUST support this public key type.  See [SILC3] for
-other optional public key and certificate types allowed in the SILC
-protocol.  Public keys in SILC may be used to authenticate entities
-and to perform other tasks related to public key cryptography.
-
-The format of the SILC Public Key is as follows:
-
-
-.in 5
-.nf
-                     1                   2                   3
- 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|                        Public Key Length                      |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|     Algorithm Name Length     |                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
-|                                                               |
-~                         Algorithm Name                        ~
-|                                                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|       Identifier Length       |                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
-|                                                               |
-~                           Identifier                          ~
-|                                                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-|                                                               |
-~                           Public Data                         ~
-|                                                               |
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-.in 3
-
-.ce
-Figure 5:  SILC Public Key
-
-
-.in 6
-o Public Key Length (4 bytes) - Indicates the full length
-  of the public key, not including this field.
-
-o Algorithm Name Length (2 bytes) - Indicates the length
-  of the Algorithm Length field, not including this field.
-
-o Algorithm name (variable length) - Indicates the name
-  of the public key algorithm that the key is.  See the
-  section 3.10.2 Public Key Algorithms for defined names.
-
-o Identifier Length (2 bytes) - Indicates the length of
-  the Identifier field, not including this field.
-
-o Identifier (variable length) - Indicates the identifier
-  of the public key.  This data can be used to identify
-  the owner of the key.  The identifier is of the following
-  format:
-
-     UN   User name
-     HN   Host name or IP address
-     RN   Real name
-     E    EMail address
-     O    Organization
-     C    Country
-
-
-  Examples of an identifier:
-
-    `UN=priikone, HN=poseidon.pspt.fi, E=priikone@poseidon.pspt.fi'
-
-    `UN=sam, HN=dummy.fi, RN=Sammy Sam, O=Company XYZ, C=Finland'
-
-  At least user name (UN) and host name (HN) MUST be provided as
-  identifier.  The fields are separated by commas (`,').  If
-  comma is in the identifier string it must be written as `\\,',
-  for example, `O=Company XYZ\\, Inc.'.
-
-o Public Data (variable length) - Includes the actual
-  public data of the public key.
-
-  The format of this field for RSA algorithm is
-  as follows:
-
-     4 bytes            Length of e
-     variable length    e
-     4 bytes            Length of n
-     variable length    n
-
-
-  The format of this field for DSS algorithm is
-  as follows:
-
-     4 bytes            Length of p
-     variable length    p
-     4 bytes            Length of q
-     variable length    q
-     4 bytes            Length of g
-     variable length    g
-     4 bytes            Length of y
-     variable length    y
-
-  The variable length fields are multiple precession
-  integers encoded as strings in both examples.
-
-  Other algorithms must define their own type of this
-  field if they are used.
-.in 3
-
-All fields in the public key are in MSB (most significant byte first)
-order.  All strings in the public key are UTF-8 encoded.
-
-
-.ti 0
-3.12 SILC Version Detection
-
-The version detection of both client and server is performed at the
-connection phase while executing the SILC Key Exchange protocol.  The
-version identifier is exchanged between initiator and responder.  The
-version identifier is of the following format:
-
-.in 6
-SILC-<protocol version>-<software version>
-.in 3
-
-The version strings are of the following format:
-
-.in 6
-protocol version = <major>.<minor>
-software version = <major>[.<minor>[.<build or vendor string>]]
-.in 3
-
-Protocol version MAY provide both major and minor version.  Currently
-implementations MUST set the protocol version and accept at least the 
-protocol version as SILC-1.1-<software version>.  If new protocol version 
-causes incompatibilities with older version the <minor> version number 
-MUST be incremented.  The <major> is incremented if new protocol version 
-is fully incompatible.
-
-Software version MAY provide major, minor and build (vendor) version.
-The software version MAY be freely set and accepted.  The version string 
-MUST consist of printable US-ASCII characters.
-
-
-Thus, the version strings could be, for example:
-
-.in 6
-SILC-1.1-2.0.2
-SILC-1.0-1.2
-SILC-1.1-1.0.VendorXYZ
-SILC-1.1-2.4.5 Vendor Limited
-.in 3
-
-
-.ti 0
-3.13 Backup Routers
-
-Backup routers may exist in the cell in addition of the primary router.
-However, they must not be active routers and act as routers in the cell.
-Only one router may be acting as primary router in the cell.  In the case
-of failure of the primary router may one of the backup routers become
-active.  The purpose of backup routers are in case of failure of the
-primary router to maintain working connections inside the cell and outside
-the cell and to avoid netsplits.
-
-Backup routers are normal servers in the cell that are prepared to take
-over the tasks of the primary router if needed.  They need to have at
-least one direct and active connection to the primary router of the cell.
-This communication channel is used to send the router information to
-the backup router.  When the backup router connects to the primary router
-of the cell it MUST present itself as router server in the Connection
-Authentication protocol, even though it is normal server as long as the
-primary router is available.  Reason for this is that the configuration
-needed in the responder end requires usually router connection level
-configuration.  The responder, however must understand and treat the
-connection as normal server (except when feeding router level data to
-the backup router).
-
-Backup router must know everything that the primary router knows to be
-able to take over the tasks of the primary router.  It is the primary
-router's responsibility to feed the data to the backup router.  If the
-backup router does not know all the data in the case of failure some
-connections may be lost.  The primary router of the cell must consider
-the backup router being actual router server when it feeds the data to
-it.
-
-In addition of having direct connection to the primary router of the
-cell, the backup router must also have connection to the same router
-the primary router of the cell is connected.  However, it must not be
-active router connection meaning that the backup router must not use
-that channel as its primary route and it must not notify the router
-about having connected servers, channels and clients behind it.  It
-merely connects to the router.  This sort of connection is later
-referred as being passive connection.  Some keepalive actions may be
-needed by the router to keep the connection alive.
-
-It is required that other normal servers have passive connections to
-the backup router(s) in the cell.  Some keepalive actions may be needed
-by the server to keep the connection alive.  After they notice the
-failure of the primary router they must start using the connection to
-the first backup router as their primary route.
-
-Also, if any other router in the network is using the cell's primary
-router as its own primary router, it must also have passive connection
-to the cell's backup router.  It too is prepared to switch to use the
-backup router as its new primary router as soon as the original primary
-router becomes unresponsive.
-
-All of the parties of this protocol knows which one is the backup router
-of the cell from their local configuration.  Each of the entity must
-be configured accordingly and care must be taken when configuring the
-backup routers, servers and other routers in the network.
-
-It must be noted that some of the channel messages and private messages
-may be lost during the switch to the backup router.  The announcements
-assures that the state of the network is not lost during the switch.
-
-It is RECOMMENDED that there would be at least one backup router in
-the cell.  It is NOT RECOMMENDED to have all servers in the cell acting
-as backup routers as it requires establishing several connections to
-several servers in the cell.  Large cells can easily have several
-backup routers in the cell.
-
-The order of the backup routers are decided at the configuration phase.
-All the parties of this protocol must be configured accordingly to 
-understand the order of the backup routers.  It is not required that
-the backup server is actually active server in the cell.  Backup router
-may be a spare server in the cell that does not accept normal client
-connections at all.  It may be reserved purely for the backup purposes.
-These, however, are cell management issues.
-
-If also the first backup router is down as well and there is another
-backup router in the cell then it will start acting as the primary
-router as described above.
-
-
-.ti 0
-3.13.1 Switching to Backup Router
-
-When the primary router of the cell becomes unresponsive, for example
-by sending EOF to the connection, all the parties of this protocol MUST
-replace the old connection to the primary router with first configured
-backup router.  The backup router usually needs to do local modifications
-to its database in order to update all the information needed to maintain
-working routes.  The backup router must understand that clients that
-were originated from the primary router are now originated from some of
-the existing server connections and must update them accordingly.  It
-must also remove those clients that were owned by the primary router
-since those connections were lost when the primary router became
-unresponsive.
-
-All the other parties of the protocol must also update their local
-database to understand that the route to the primary router will now go
-to the backup router.
-
-The servers connected to the backup router must announce their clients,
-channels, channel users, channel user modes and channel modes to the
-backup router.  This is to assure that none of the important notify 
-packets were lost during the switch to the backup router.  The backup
-router must check which of these announced entities it already have
-and distribute the new ones to the primary route.
-
-The backup router too must announce its servers, clients, channels
-and other information to the new primary router.  The primary router
-of the backup router too must announce its informations to the backup
-router.  Both must process only the ones they do not know about.  If
-any of the announced modes does not match then they are enforced in
-normal manner defined later in this specification.
-
-
-.ti 0
-3.13.2 Resuming Primary Router
-
-Usually the primary router is unresponsive only a short period of time
-and it is intended that the original router of the cell will resume
-its position as primary router when it comes back online.  The backup
-router that is now acting as primary router of the cell must constantly
-try to connect to the original primary router of the cell.  It is
-RECOMMENDED that it would try to reconnect in 30 second intervals to
-the primary router.
-
-When the connection is established to the primary router the backup
-resuming protocol is executed.  The protocol is advanced as follows:
-
-  1. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
-     value 1 the primary router that came back online.  The packet
-     will indicate the primary router has been replaced by the backup
-     router.  After sending the packet the backup router will announce
-     all of its channels, channel users, modes etc. to the primary
-     router.
-
-  2. Backup router sends SILC_PACKET_RESUME_ROUTER packet with type
-     value 2 to its current primary router to indicate that it will
-     resign as being primary router.  Then, backup router sends the
-     SILC_PACKET_RESUME_ROUTER packet with type value 1 to all
-     connected servers to also indicate that it will resign as being
-     primary router.
-
-  3. Backup router also send SILC_PACKET_RESUME_ROUTER packet with
-     type value 2 to the router that is using the backup router
-     currently as its primary router.
-
-  4. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
-     with type value 1 or 2 must reconnect immediately to the
-     primary router of the cell that came back online.  After they
-     have created the connection they MUST NOT use that connection
-     as active primary route but still route all packets to the
-     backup router.  After the connection is created they MUST send
-     SILC_PACKET_RESUME_ROUTER with type value 3 back to the
-     backup router.  The session ID value found in the first packet
-     MUST be set in this packet.
-
-  5. Backup router MUST wait for all packets with type value 3 before
-     it continues with the protocol.  It knows from the session ID values
-     set in the packet when it have received all packets.  The session
-     value should be different in all packets it have send earlier.
-     After the packets is received the backup router sends the
-     SILC_PACKET_RESUME_ROUTER packet with type value 4 to the
-     primary router that came back online.  This packet will indicate 
-     that the backup router is now ready to resign as being primary
-     router.  The session ID value in this packet MUST be the same as
-     in first packet sent to the primary router.  During this time
-     the backup router should still route all packets it is receiving
-     from server connections.
-
-  6. The primary router receives the packet and send the
-     SILC_PACKET_RESUME_ROUTER with type value 5 to all connected servers
-     including the backup router.  It also sends the packet with type
-     value 6 to its primary router, and to the router that is using
-     it as its primary router.  The Session ID value in this packet
-     SHOULD be zero (0).
-
-  7. Any server and router that receives the SILC_PACKET_RESUME_ROUTER
-     with type value 5 or 6 must switch their primary route to the
-     new primary router and remove the route for the backup router, since
-     it is not anymore the primary router of the cell.  They must also
-     update their local database to understand that the clients are
-     not originated from the backup router but from the locally connected
-     servers.  After that they MUST announce their channels, channel
-     users, modes etc. to the primary router.  They must not use the
-     backup router connection after this and the connection is considered
-     to be passive connection.  The implementations SHOULD be able
-     to disable the connection without closing the actual link.
-
-After this protocol is executed the backup router is now again normal
-server in the cell that has the backup link to the primary router.  The
-primary router feeds the router specific data again to the backup router.
-All server connections in the backup router are considered passive
-connections.
-
-When the primary router of the cell comes back online and connects
-to its primary router, the remote primary router must send the 
-SILC_PACKET_RESUME_ROUTER with type value 20 indicating that the
-connection is not allowed since the router has been replaced by an
-backup router.  The session ID value in this packet SHOULD be zero (0).
-When the router receives this packet it must not use the connection
-as active connection but to understand that it cannot act as primary
-router in the cell.  It must wait that the backup router connects to
-it, and the backup resuming protocol is executed.
-
-The following type values has been defined for SILC_PACKET_RESUME_ROUTER
-packet:
-
-  1    SILC_SERVER_BACKUP_START
-  2    SILC_SERVER_BACKUP_START_GLOBAL
-  3    SILC_SERVER_BACKUP_START_CONNECTED
-  4    SILC_SERVER_BACKUP_START_ENDING
-  5    SILC_SERVER_BACKUP_START_RESUMED
-  6    SILC_SERVER_BACKUP_START_GLOBAL
-  20   SILC_SERVER_BACKUP_START_REPLACED
-
-If any other value is found in the type field the packet must be 
-discarded.  The SILC_PACKET_RESUME_ROUTER packet and its payload
-is defined in [SILC2].
-
-
-.ti 0
-3.13.3 Discussion on Backup Router Scheme
-
-It is clear that this backup router support is not able to handle all
-possible situations arising in unreliable network environment.  This
-scheme for example does not handle situation when the router actually
-does not go offline but the network link goes down temporarily.  It would
-require some intelligence to figure out when it is best time to switch
-to the backup router.  To make it even more complicated it is possible
-that the backup router may have not lost the network link to the primary
-router.
-
-Other possible situation is when the network link is lost temporarily
-between two primary routers in the SILC network.  Unless the routers
-notice the link going down they cannot perhaps find alternative routes.
-Worst situation is when the link goes down only for a short period of
-time, thus causing lag.  Should the routers or servers find alternative
-routes if they cannot get response from the router during the lag?
-When alternative routes are being found it must be careful not to
-mess up existing primary routes between routers in the network.
-
-It is suggested that the current backup router scheme is only temporary
-solution and existing backup router protocols are studied further.  It
-is also suggested that the backup router specification will be separated
-from this SILC specification Internet-Draft and additional specification
-is written on the subject.
-
-
-.ti 0
-4 SILC Procedures
-
-This section describes various SILC procedures such as how the 
-connections are created and registered, how channels are created and
-so on.  The section describes the procedures only generally as details
-are described in [SILC2] and [SILC3].
-
-
-.ti 0
-4.1 Creating Client Connection
-
-This section describes the procedure when client connects to SILC server.
-When client connects to server the server MUST perform IP address lookup
-and reverse IP address lookup to assure that the origin host really is
-who it claims to be.  Client, host, connecting to server SHOULD have 
-both valid IP address and fully qualified domain name (FQDN).
-
-After that the client and server performs SILC Key Exchange protocol
-which will provide the key material used later in the communication.
-The key exchange protocol MUST be completed successfully before the
-connection registration may continue.  The SILC Key Exchange protocol
-is described in [SILC3].
-
-Typical server implementation would keep a list of connections that it
-allows to connect to the server.  The implementation would check, for
-example, the connecting client's IP address from the connection list
-before the SILC Key Exchange protocol has been started.  Reason for
-this is that if the host is not allowed to connect to the server there
-is no reason to perform the key exchange protocol.
-
-After successful key exchange protocol the client and server performs
-connection authentication protocol.  The purpose of the protocol is to
-authenticate the client connecting to the server.  Flexible
-implementation could also accept the client to connect to the server
-without explicit authentication.  However, if authentication is
-desired for a specific client it may be based on passphrase or
-public key authentication.  If authentication fails the connection
-MUST be terminated.  The connection authentication protocol is described
-in [SILC3].
-
-After successful key exchange and authentication protocol the client
-registers itself by sending SILC_PACKET_NEW_CLIENT packet to the
-server.  This packet includes various information about the client
-that the server uses to create the client.  Server creates the client
-and sends SILC_PACKET_NEW_ID to the client which includes the created
-Client ID that the client MUST start using after that.  After that
-all SILC packets from the client MUST have the Client ID as the
-Source ID in the SILC Packet Header, described in [SILC2].
-
-Client MUST also get the server's Server ID that is to be used as
-Destination ID in the SILC Packet Header when communicating with
-the server (for example when sending commands to the server).  The
-ID may be resolved in two ways.  Client can take the ID from an
-previously received packet from server that MUST include the ID,
-or to send SILC_COMMAND_INFO command and receive the Server ID as
-command reply.
-
-Server MAY choose not to use the information received in the
-SILC_PACKET_NEW_CLIENT packet.  For example, if public key or 
-certificate were used in the authentication, server MAY use those
-informations rather than what it received from client.  This is suitable
-way to get the true information about client if it is available.
-
-The nickname of client is initially set to the username sent in the
-SILC_PACKET_NEW_CLIENT packet.  User should set the nickname to more
-suitable by sending SILC_COMMAND_NICK command.  However, this is not
-required as part of registration process.
-
-Server MUST also distribute the information about newly registered
-client to its router (or if the server is router, to all routers in
-the SILC network).  More information about this in [SILC2].
-
-Router server MUST also check whether some client in the local cell
-is watching for the nickname this new client has, and send the 
-SILC_NOTIFY_TYPE_WATCH to the watcher.
-
-
-.ti 0
-4.2 Creating Server Connection
-
-This section describes the procedure when server connects to its
-router (or when router connects to other router, the cases are
-equivalent).  The procedure is very much alike when client connects
-to the server thus it is not repeated here.
-
-One difference is that server MUST perform connection authentication
-protocol with proper authentication.  A proper authentication is based
-on passphrase or public key authentication.
-
-After server and router has successfully performed the key exchange
-and connection authentication protocol, the server register itself
-to the router by sending SILC_PACKET_NEW_SERVER packet.  This packet
-includes the server's Server ID that it has created by itself and
-other relevant information about the server.
-
-After router has received the SILC_PACKET_NEW_SERVER packet it
-distributes the information about newly registered server to all routers
-in the SILC network.  More information about this in [SILC2].
-
-As client needed to resolve the destination ID this MUST be done by the
-server that connected to the router, as well.  The way to resolve it is
-to get the ID from previously received packet.  The server MAY also 
-use SILC_COMMAND_INFO command to resolve the ID.  Server MUST also start
-using its own Server ID as Source ID in SILC Packet Header and the
-router's Server ID as Destination when communicating with the router.
-
-
-.ti 0
-4.2.1 Announcing Clients, Channels and Servers
-
-After server or router has connected to the remote router, and it already
-has connected clients and channels it MUST announce them to the router.
-If the server is router server, also all the local servers in the cell
-MUST be announced.
-
-All clients are announced by compiling a list of ID Payloads into the
-SILC_PACKET_NEW_ID packet.  All channels are announced by compiling a
-list of Channel Payloads into the SILC_PACKET_NEW_CHANNEL packet.  Also, 
-the channel users on the channels must be announced by compiling a
-list of Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into
-the SILC_PACKET_NOTIFY packet.  The users' modes on the channel must 
-also be announced by compiling list of Notify Payloads with the 
-SILC_NOTIFY_TYPE_CUMODE_CHANGE notify type into the SILC_PACKET_NOTIFY
-packet.
-
-The router MUST also announce the local servers by compiling list of
-ID Payloads into the SILC_PACKET_NEW_ID packet.
-
-Also, clients' modes (user modes in SILC) MUST be announced.  This is
-done by compiling a list of Notify Payloads with the 
-SILC_NOTIFY_UMODE_CHANGE nofity type into the SILC_PACKET_NOTIFY packet.
-
-Also, channel's topics MUST be announced by compiling a list of Notify
-Payloads with the SILC_NOTIFY_TOPIC_SET notify type into the
-SILC_PACKET_NOTIFY packet.
-
-The router which receives these lists MUST process them and broadcast
-the packets to its primary route.
-
-When processing the announced channels and channel users the router MUST
-check whether a channel exists already with the same name.  If channel
-exists with the same name it MUST check whether the Channel ID is
-different.  If the Channel ID is different the router MUST send the notify
-type SILC_NOTIFY_TYPE_CHANNEL_CHANGE to the server to force the channel ID
-change to the ID the router has.  If the mode of the channel is different
-the router MUST send the notify type SILC_NOTIFY_TYPE_CMODE_CHANGE to the
-server to force the mode change to the mode that the router has.
-
-The router MUST also generate new channel key and distribute it to the
-channel.  The key MUST NOT be generated if the SILC_CMODE_PRIVKEY mode
-is set.
-
-If the channel has channel founder on the router the router MUST send
-the notify type SILC_NOTIFY_TYPE_CUMODE_CHANGE to the server to force
-the mode change for the channel founder on the server.  The channel 
-founder privileges MUST be removed.
-
-The router processing the channels MUST also compile a list of
-Notify Payloads with the SILC_NOTIFY_TYPE_JOIN notify type into the
-SILC_PACKET_NOTIFY and send the packet to the server.  This way the
-server (or router) will receive the clients on the channel that
-the router has.
-
-
-.ti 0
-4.3 Joining to a Channel
-
-This section describes the procedure when client joins to a channel.
-Client joins to channel by sending command SILC_COMMAND_JOIN to the
-server.  If the receiver receiving join command is normal server the
-server MUST check its local list whether this channel already exists
-locally.  This would indicate that some client connected to the server
-has already joined to the channel.  If this is case the client is
-joined to the channel, new channel key is created and information about
-newly joined channel is sent to the router.  The router is informed
-by sending SILC_NOTIFY_TYPE_JOIN notify type.  The notify type MUST
-also be sent to the local clients on the channel.  The new channel key
-is also sent to the router and to local clients on the channel.
-
-If the channel does not exist in the local list the client's command
-MUST be sent to the router which will then perform the actual joining
-procedure.  When server receives the reply to the command from the
-router it MUST be sent to the client which sent the command originally.
-Server will also receive the channel key from the server that it MUST
-send to the client which originally requested the join command.  The
-server MUST also save the channel key.
-
-If the receiver of the join command is router it MUST first check its
-local list whether anyone in the cell has already joined to the channel.
-If this is the case the client is joined to the channel and reply is
-sent to the client.  If the command was sent by server the command reply
-is sent to the server which sent it.  Then the router MUST also create
-new channel key and distribute it to all clients on the channel and
-all servers that has clients on the channel.  Router MUST also send
-the SILC_NOTIFY_TYPE_JOIN notify type to local clients on the channel
-and to local servers that has clients on the channel.
-
-If the channel does not exist on the router's local list it MUST
-check the global list whether the channel exists at all.  If it does
-the client is joined to the channel as described previously.  If
-the channel does not exist the channel is created and the client
-is joined to the channel.  The channel key is also created and
-distributed as previously described.  The client joining to the created
-channel is made automatically channel founder and both channel founder
-and channel operator privileges is set for the client.
-
-If the router created the channel in the process, information about the
-new channel MUST be broadcasted to all routers.  This is done by 
-broadcasting SILC_PACKET_NEW_CHANNEL packet to the router's primary
-route.  When the router joins the client to the channel it MUST also
-send information about newly joined client to all routers in the SILC
-network.  This is done by broadcasting the SILC_NOTIFY_TYPE_JOIN notify
-type to the router's primary route. 
-
-It is important to note that new channel key is created always when
-new client joins to channel, whether the channel has existed previously
-or not.  This way the new client on the channel is not able to decrypt
-any of the old traffic on the channel.  Client which receives the reply to
-the join command MUST start using the received Channel ID in the channel
-message communication thereafter.  Client also receives the key for the
-channel in the command reply.  Note that the channel key is never
-generated if the SILC_CMODE_PRIVKEY mode is set.
-
-
-.ti 0
-4.4 Channel Key Generation
-
-Channel keys are created by router which creates the channel by taking
-enough randomness from cryptographically strong random number generator.
-The key is generated always when channel is created, when new client
-joins a channel and after the key has expired.  Key could expire for
-example in an hour.
-
-The key MUST also be re-generated whenever some client leaves a channel.
-In this case the key is created from scratch by taking enough randomness
-from the random number generator.  After that the key is distributed to
-all clients on the channel.  However, channel keys are cell specific thus
-the key is created only on the cell where the client, which left the
-channel, exists.  While the server or router is creating the new channel
-key, no other client may join to the channel.  Messages that are sent
-while creating the new key are still processed with the old key.  After
-server has sent the SILC_PACKET_CHANNEL_KEY packet MUST client start
-using the new key.  If server creates the new key the server MUST also
-send the new key to its router.  See [SILC2] on more information about
-how channel messages must be encrypted and decrypted when router is
-processing them.
-
-When client receives the SILC_PACKET_CHANNEL_KEY packet with the
-Channel Key Payload it MUST process the key data to create encryption
-and decryption key, and to create the HMAC key that is used to compute
-the MACs of the channel messages.  The processing is as follows:
-
-  channel_key  = raw key data
-  HMAC key     = hash(raw key data)
-
-The raw key data is the key data received in the Channel Key Payload.
-The hash() function is the hash function used in the HMAC of the channel.
-Note that the server MUST also save the channel key.
-
-
-.ti 0
-4.5 Private Message Sending and Reception
-
-Private messages are sent point to point.  Client explicitly destines
-a private message to specific client that is delivered to only to that
-client.  No other client may receive the private message.  The receiver
-of the private message is destined in the SILC Packet Header as any
-other packet as well.
-
-If the sender of a private message does not know the receiver's Client
-ID, it MUST resolve it from server.  There are two ways to resolve the
-client ID from server; it is RECOMMENDED that client implementations
-send SILC_COMMAND_IDENTIFY command to receive the Client ID.  Client
-MAY also send SILC_COMMAND_WHOIS command to receive the Client ID.
-If the sender has received earlier a private message from the receiver
-it should have cached the Client ID from the SILC Packet Header.
-
-If server receives a private message packet which includes invalid
-destination Client ID the server MUST send SILC_NOTIFY_TYPE_ERROR
-notify to the client with error status indicating that such Client ID
-does not exist.
-
-See [SILC2] for description of private message encryption and decryption
-process.
-
-
-.ti 0
-4.6 Private Message Key Generation
-
-Private message MAY be protected by the key generated by the client.
-The key may be generated and sent to the other client by sending packet
-SILC_PACKET_PRIVATE_MESSAGE_KEY which travels through the network
-and is secured by session keys.  After that the private message key
-is used in the private message communication between those clients.
-
-Other choice is to entirely use keys that are not sent through
-the SILC network at all.  This significantly adds security.  This key
-would be pre-shared-key that is known by both of the clients.  Both
-agree about using the key and starts sending packets that indicate
-that the private message is secured using private message key.
-
-The key material used as private message key is implementation issue.
-However, SILC_PACKET_KEY_AGREEMENT packet MAY be used to negotiate
-the key material.  If the key is normal pre-shared-key or randomly
-generated key, and the SILC_PACKET_KEY_AGREEMENT was not used, then
-the key material SHOULD be processed as defined in the [SILC3].  In
-the processing, however, the HASH, as defined in [SILC3] MUST be 
-ignored.  After processing the key material it is employed as defined
-in [SILC3], however, the HMAC key material MUST be discarded.
-
-If the key is pre-shared-key or randomly generated the implementations
-SHOULD use the SILC protocol's mandatory cipher as the cipher.  If the
-SKE was used to negotiate key material the cipher was negotiated as well,
-and may be different from default cipher.
-
-
-.ti 0
-4.7 Channel Message Sending and Reception
-
-Channel messages are delivered to group of users.  The group forms a
-channel and all clients on the channel receives messages sent to the
-channel.
-
-Channel messages are destined to channel by specifying the Channel ID
-as Destination ID in the SILC Packet Header.  The server MUST then
-distribute the message to all clients on the channel by sending the
-channel message destined explicitly to a client on the channel.
-
-If server receives a channel message packet which includes invalid
-destination Channel ID the server MUST send SILC_NOTIFY_TYPE_ERROR
-notify to the sender with error status indicating that such Channel ID
-does not exist.
-
-See the [SILC2] for description of channel message routing for router
-servers, and channel message encryption and decryption process.
-
-
-.ti 0
-4.8 Session Key Regeneration
-
-Session keys MUST be regenerated periodically, say, once in an hour.
-The re-key process is started by sending SILC_PACKET_REKEY packet to
-other end, to indicate that re-key must be performed.  The initiator
-of the connection SHOULD initiate the re-key.
-
-If perfect forward secrecy (PFS) flag was selected in the SILC Key
-Exchange protocol [SILC3] the re-key MUST cause new key exchange with
-SKE protocol.  In this case the protocol is secured with the old key
-and the protocol results to new key material.  See [SILC3] for more
-information.  After the SILC_PACKET_REKEY packet is sent the sender
-will perform the SKE protocol.
-
-If PFS flag was set the resulted key material is processed as described
-in the section Processing the Key Material in [SILC3].  The difference
-with re-key in the processing is that the initial data for the hash 
-function is just the resulted key material and not the HASH as it
-is not computed at all with re-key.  Other than that, the key processing
-it equivalent to normal SKE negotiation.
-
-If PFS flag was not set, which is the default case, then re-key is done
-without executing SKE protocol.  In this case, the new key is created by
-providing the current sending encryption key to the SKE protocol's key
-processing function.  The process is described in the section Processing
-the Key Material in [SILC3].  The difference in the processing is that
-the initial data for the hash function is the current sending encryption
-key and not the SKE's KEY and HASH values.  Other than that, the key
-processing is equivalent to normal SKE negotiation.
-
-After both parties has regenerated the session key, both MUST send
-SILC_PACKET_REKEY_DONE packet to each other.  These packets are still
-secured with the old key.  After these packets, the subsequent packets
-MUST be protected with the new key.
-
-
-.ti 0
-4.9 Command Sending and Reception
-
-Client usually sends the commands in the SILC network.  In this case
-the client simply sends the command packet to server and the server
-processes it and replies with command reply packet.  See the [SILC3]
-for detailed description of all commands.
-
-However, if the server is not able to process the command, it is sent 
-to the server's router.  This is case for example with commands such
-as, SILC_COMMAND_JOIN and SILC_COMMAND_WHOIS commands.  However, there
-are other commands as well.  For example, if client sends the WHOIS
-command requesting specific information about some client the server must
-send the WHOIS command to router so that all clients in SILC network
-are searched.  The router, on the other hand, sends the WHOIS command
-further to receive the exact information about the requested client.
-The WHOIS command travels all the way to the server which owns the client
-and it replies with command reply packet.  Finally, the server which
-sent the command receives the command reply and it must be able to
-determine which client sent the original command.  The server then
-sends command reply to the client.  Implementations should have some
-kind of cache to handle, for example, WHOIS information.  Servers
-and routers along the route could all cache the information for faster
-referencing in the future.
-
-The commands sent by server may be sent hop by hop until someone is able
-to process the command.  However, it is preferred to destine the command
-as precisely as it is possible.  In this case, other routers en route
-MUST route the command packet by checking the true sender and true
-destination of the packet.  However, servers and routers MUST NOT route
-command reply packets to clients coming from other server.  Client
-MUST NOT accept command reply packet originated from anyone else but
-from its own server.
-
-
-.ti 0
-4.10 Closing Connection
-
-When remote client connection is closed the server MUST send the notify
-type SILC_NOTIFY_TYPE_SIGNOFF to its primary router and to all channels
-the client was joined.  The server MUST also save the client's information
-for a period of time for history purposes.
-
-When remote server or router connection is closed the server or router
-MUST also remove all the clients that was behind the server or router
-from the SILC Network.  The server or router MUST also send the notify
-type SILC_NOTIFY_TYPE_SERVER_SIGNOFF to its primary router and to all
-local clients that are joined on the same channels with the remote 
-server's or router's clients.
-
-Router server MUST also check whether some client in the local cell
-is watching for the nickname this client has, and send the 
-SILC_NOTIFY_TYPE_WATCH to the watcher, unless the client which left
-the network has the SILC_UMODE_REJECT_WATCHING user mode set.
-
-
-.ti 0
-4.11 Detaching and Resuming a Session
-
-SILC protocol provides a possibility for a client to detach itself from
-the network without actually signing off from the network.  The client
-connection to the server is closed but the client remains as valid client
-in the network.  The client may then later resume its session back from
-any server in the network.
-
-When client wishes to detach from the network it MUST send the
-SILC_COMMAND_DETACH command to its server.  The server then MUST set
-SILC_UMODE_DETACHED mode to the client and send SILC_NOTIFY_UMODE_CHANGE
-notify to its primary router, which will then MUST broadcast it further
-to other routers in the network.  This user mode indicates that the
-client is detached from the network.  Implementations MUST NOT use
-the SILC_UMODE_DETACHED flag to determine whether a packet can be sent
-to the client.  All packets MUST still be sent to the client even if
-client is detached from the network.  Only the server that originally
-had the active client connection is able to make the decision after it
-notices that the network connection is not active.  In this case the
-default case is to discard the packet.
-
-The SILC_UMODE_DETACHED flag cannot be set by client itself directly
-with SILC_COMMAND_UMODE command, but only implicitly by sending the
-SILC_COMMAND_DETACH command.  The flag also cannot be unset by the
-client, server or router with SILC_COMMAND_UMODE command, but only
-implicitly by sending and receiving the SILC_PACKET_RESUME_CLIENT
-packet.
-
-When the client wishes to resume its session in the SILC Network it
-connects to a server in the network, which MAY also be a different
-from the original server, and performs normal procedures regarding
-creating a connection as described in section 4.1.  After the SKE
-and the Connection Authentication protocols has been successfully
-completed the client MUST NOT send SILC_PACKET_NEW_CLIENT packet, but
-MUST send SILC_PACKET_RESUME_CLIENT packet.  This packet is used to
-perform the resuming procedure.  The packet MUST include the detached
-client's Client ID, which the client must know.  It also includes
-Authentication Payload which includes signature made with the client's
-private key.  The signature is computed as defined in the section
-3.9.1.  Thus, the authentication method MUST be based in public key
-authentication.
-
-When server receives the SILC_PACKET_RESUME_CLIENT packet it MUST
-do the following:  Server checks that the Client ID is valid client
-and that it has the SILC_UMODE_DETACHED mode set.  Then it verifies
-the Authentication Payload with the detached client's public key.
-If it does not have the public key it retrieves it by sending
-SILC_COMMAND_GETKEY command to the server that has the public key from
-the original client connection.  The server MUST NOT use the public
-key received in the SKE protocol for this connection.  If the
-signature is valid the server unsets the SILC_UMODE_DETACHED flag,
-and sends the SILC_PACKET_RESUME_CLIENT packet to its primary router.
-The routers MUST broadcast the packet and unset the SILC_UMODE_DETACHED
-flag when the packet is received.  If the server is router server it
-also MUST send the SILC_PACKET_RESUME_CLIENT packet to the original
-server whom owned the detached client.
-
-The servers and routers that receives the SILC_PACKET_RESUME_CLIENT
-packet MUST know whether the packet already has been received for
-the client.  It is protocol error to attempt to resume the client
-session from more than one server.  The implementations could set
-internal flag that indicates that the client is resumed.  If router
-receive SILC_PACKET_RESUME_CLIENT packet for client that is already
-resumed the client MUST be killed from the network.  This would
-indicate that the client is attempting to resume the session more
-than once which is protocol error.  In this case the router sends
-SILC_NOTIFY_TYPE_KILLED to the client.  All routers that detect
-the same situation MUST also send the notify for the client.
-
-The servers and routers that receive the SILC_PACKET_RESUME_CLIENT
-must also understand that the client may not be found behind the
-same server that it originally came from.  They must update their
-caches according this.  The server that now owns the client session
-MUST check whether the Client ID of the resumed client is based
-on the server's Server ID.  If it is not it creates a new Client
-ID and send SILC_NOTIFY_TYPE_NICK_CHANGE to the network.  It MUST
-also send the channel keys of all channels that the client is
-joined to the client since it does not have them.  Whether the
-Client ID was changed or not the server MUST send SILC_PACKET_NEW_ID
-packet to the client.  Only after this the client is resumed back
-to the network and may start sending packets and messages.
-
-It is also possible that the server does not know about the channels
-that the client has joined.  In this case it join the client internally
-to the channels, generate new channel keys and distribute the keys
-to the channels as described in section 4.4.
-
-It is implementation issue for how long servers keep detached client
-sessions.  It is RECOMMENDED that the detached sessions would be
-persistent as long as the server is running.
-
-
-.ti 0
-5 Security Considerations
-
-Security is central to the design of this protocol, and these security
-considerations permeate the specification.  Common security considerations
-such as keeping private keys truly private and using adequate lengths for
-symmetric and asymmetric keys must be followed in order to maintain the
-security of this protocol.
-
-Special attention must also be paid on the servers and routers that are
-running the SILC service.  The SILC protocol's security depends greatly
-on the security and the integrity of the servers and administrators that
-are running the service.  It is recommended that some form of registration
-is required by the server and router administrator prior acceptance to
-the SILC Network.  Even though, the SILC protocol is secure in a network
-of mutual distrust between clients, servers, routers and administrators
-of the servers, the client should be able to trust the servers they are
-using if they wish to do so.
-
-It however must be noted that if the client requires absolute security
-by not trusting any of the servers or routers in the SILC Network, it can
-be accomplished by negotiating private keys outside the SILC Network,
-either using SKE or some other key exchange protocol, or to use some
-other external means for distributing the keys.  This applies for all 
-messages, private messages and channel messages.
-
-It is important to note that SILC, like any other security protocol is
-not full proof system; the SILC servers and routers could very well be
-compromised.  However, to provide acceptable level of security and
-usability for end user the protocol use many times session keys or other
-keys generated by the servers to secure the messages.  This is
-intentional design feature to allow ease of use for end user.  This way
-the network is still usable, and remains encrypted even if the external
-means of distributing the keys is not working.  The implementation,
-however, may like to not follow this design feature, and always negotiate
-the keys outside SILC network.  This is acceptable solution and many times
-recommended.  The implementation still must be able to work with the
-server generated keys.
-
-If this is unacceptable for the client or end user, the private keys
-negotiated outside the SILC Network should always be used.  In the end
-it is always implementor's choice whether to negotiate private keys by
-default or whether to use the keys generated by the servers.
-
-It is also recommended that router operators in the SILC Network would
-form a joint forum to discuss the router and SILC Network management
-issues.  Also, router operators along with the cell's server operators
-should have a forum to discuss the cell management issues.
-
-
-.ti 0
-6 References
-
-[SILC2]      Riikonen, P., "SILC Packet Protocol", Internet Draft,
-             May 2002.
-
-[SILC3]      Riikonen, P., "SILC Key Exchange and Authentication 
-             Protocols", Internet Draft, May 2002.
-
-[SILC4]      Riikonen, P., "SILC Commands", Internet Draft, May 2002.
-
-[IRC]        Oikarinen, J., and Reed D., "Internet Relay Chat Protocol",
-             RFC 1459, May 1993.
-
-[IRC-ARCH]   Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,
-             April 2000.
-
-[IRC-CHAN]   Kalt, C., "Internet Relay Chat: Channel Management", RFC
-             2811, April 2000.
-
-[IRC-CLIENT] Kalt, C., "Internet Relay Chat: Client Protocol", RFC
-             2812, April 2000.
-
-[IRC-SERVER] Kalt, C., "Internet Relay Chat: Server Protocol", RFC
-             2813, April 2000.
-
-[SSH-TRANS]  Ylonen, T., et al, "SSH Transport Layer Protocol", 
-             Internet Draft.
-
-[PGP]        Callas, J., et al, "OpenPGP Message Format", RFC 2440,
-             November 1998.
-
-[SPKI]       Ellison C., et al, "SPKI Certificate Theory", RFC 2693,
-             September 1999.
-
-[PKIX-Part1] Housley, R., et al, "Internet X.509 Public Key 
-             Infrastructure, Certificate and CRL Profile", RFC 2459,
-             January 1999.
-
-[Schneier]   Schneier, B., "Applied Cryptography Second Edition",
-             John Wiley & Sons, New York, NY, 1996.
-
-[Menezes]    Menezes, A., et al, "Handbook of Applied Cryptography",
-             CRC Press 1997.
-
-[OAKLEY]     Orman, H., "The OAKLEY Key Determination Protocol",
-             RFC 2412, November 1998.
-
-[ISAKMP]     Maughan D., et al, "Internet Security Association and
-             Key Management Protocol (ISAKMP)", RFC 2408, November
-             1998.
-
-[IKE]        Harkins D., and Carrel D., "The Internet Key Exchange
-             (IKE)", RFC 2409, November 1998.
-
-[HMAC]       Krawczyk, H., "HMAC: Keyed-Hashing for Message
-             Authentication", RFC 2104, February 1997.
-
-[PKCS1]      Kalinski, B., and Staddon, J., "PKCS #1 RSA Cryptography
-             Specifications, Version 2.0", RFC 2437, October 1998.
-
-[RFC2119]    Bradner, S., "Key Words for use in RFCs to Indicate
-             Requirement Levels", BCP 14, RFC 2119, March 1997.
-
-[RFC2279]    Yergeau, F., "UTF-8, a transformation format of ISO
-             10646", RFC 2279, January 1998.
-
-[PKCS7]      Kalinski, B., "PKCS #7: Cryptographic Message Syntax,
-             Version 1.5", RFC 2315, March 1998.
-
-
-.ti 0
-7 Author's Address
-
-.nf
-Pekka Riikonen
-Snellmaninkatu 34 A 15
-70100 Kuopio
-Finland
-
-EMail: priikone@iki.fi
-
-This Internet-Draft expires 15 November 2002