Added new math library based on TFM.
[crypto.git] / lib / silcmath / tfm.h
index 677f2885469c1236f3c42947cc01817e6262064a..aedf42a1cad8248e32140fe429dc43992ccb8ae9 100644 (file)
@@ -5,7 +5,7 @@
  *
  * This project is public domain and free for all purposes.
  *
- * Tom St Denis, tomstdenis@iahu.ca
+ * Tom St Denis, tomstdenis@gmail.com
  */
 #ifndef TFM_H_
 #define TFM_H_
 #include <ctype.h>
 #include <limits.h>
 
-/* Assure these -Pekka */
+typedef struct tfm_fp_int_struct tfm_fp_int;
+
+#include <silccrypto.h>
+
 #undef CRYPT
 
-#undef MIN
-#define MIN(x,y) ((x)<(y)?(x):(y))
-#undef MAX
-#define MAX(x,y) ((x)>(y)?(x):(y))
+#ifdef SILC_X86_64
+#define TFM_X86_64
+#endif /* SILC_X86_64 */
 
-/* do we want large code? */
-#define TFM_LARGE
+#ifdef SILC_I386
+#define TFM_X86
+#ifdef SILC_CPU_SSE2
+#define TFM_SSE2
+#endif /* SILC_CPU_SSE2 */
+#endif /* SILC_I386 */
 
-/* do we want huge code (implies large)?  The answer is, yes. */
-#define TFM_HUGE
+#ifndef MIN
+   #define MIN(x,y) ((x)<(y)?(x):(y))
+#endif
+
+#ifndef MAX
+   #define MAX(x,y) ((x)>(y)?(x):(y))
+#endif
+
+/* externally define this symbol to ignore the default settings, useful for changing the build from the make process */
+#ifndef TFM_ALREADY_SET
+
+/* do we want the large set of small multiplications ?
+   Enable these if you are going to be doing a lot of small (<= 16 digit) multiplications say in ECC
+   Or if you're on a 64-bit machine doing RSA as a 1024-bit integer == 16 digits ;-)
+ */
+#define TFM_SMALL_SET
+
+/* do we want huge code
+   Enable these if you are doing 20, 24, 28, 32, 48, 64 digit multiplications (useful for RSA)
+   Less important on 64-bit machines as 32 digits == 2048 bits
+ */
+#define TFM_MUL20
+#define TFM_MUL24
+#define TFM_MUL28
+#define TFM_MUL32
+#define TFM_MUL48
+#define TFM_MUL64
+
+#define TFM_SQR20
+#define TFM_SQR24
+#define TFM_SQR28
+#define TFM_SQR32
+#define TFM_SQR48
+#define TFM_SQR64
+
+/* do we want some overflow checks
+   Not required if you make sure your numbers are within range (e.g. by default a modulus for tfm_fp_exptmod() can only be upto 2048 bits long)
+ */
+#define TFM_CHECK
+
+/* Is the target a P4 Prescott
+ */
+/* #define TFM_PRESCOTT */
+
+/* Do we want timing resistant tfm_fp_exptmod() ?
+ * This makes it slower but also timing invariant with respect to the exponent
+ */
+/* #define TFM_TIMING_RESISTANT */
 
-/* imply TFM_LARGE as required */
-#if defined(TFM_HUGE)
-   #if !defined(TFM_LARGE)
-      #define TFM_LARGE
-   #endif
 #endif
 
 /* Max size of any number in bits.  Basically the largest size you will be multiplying
- * should be half [or smaller] of FP_MAX_SIZE-four_digit
+ * should be half [or smaller] of TFM_FP_MAX_SIZE-four_digit
  *
- * You can externally define this or it defaults to 4096-bits.
+ * You can externally define this or it defaults to 4096-bits [allowing multiplications upto 2048x2048 bits ]
  */
-#ifndef FP_MAX_SIZE
-/* For SILC -Pekka */
-   #define FP_MAX_SIZE           (8192+(4*DIGIT_BIT))
-/*   #define FP_MAX_SIZE           (4096+(4*DIGIT_BIT))*/
+#ifndef TFM_FP_MAX_SIZE
+   #define TFM_FP_MAX_SIZE           (8192+(8*DIGIT_BIT))
 #endif
 
 /* will this lib work? */
 #if (CHAR_BIT & 7)
    #error CHAR_BIT must be a multiple of eight.
 #endif
-#if FP_MAX_SIZE % CHAR_BIT
-   #error FP_MAX_SIZE must be a multiple of CHAR_BIT
+#if TFM_FP_MAX_SIZE % CHAR_BIT
+   #error TFM_FP_MAX_SIZE must be a multiple of CHAR_BIT
 #endif
 
 /* autodetect x86-64 and make sure we are using 64-bit digits with x86-64 asm */
    #endif
 #endif
 #if defined(TFM_X86_64)
-    #if !defined(FP_64BIT)
-       #define FP_64BIT
+    #if !defined(TFM_FP_64BIT)
+       #define TFM_FP_64BIT
     #endif
 #endif
 
    #endif
 #endif
 
-/* make sure we're 32-bit for x86-32/sse/arm */
-#if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM)) && defined(FP_64BIT)
-   #warning x86-32, SSE2 and ARM optimizations require 32-bit digits (undefining)
-   #undef FP_64BIT
+/* make sure we're 32-bit for x86-32/sse/arm/ppc32 */
+#if (defined(TFM_X86) || defined(TFM_SSE2) || defined(TFM_ARM) || defined(TFM_PPC32)) && defined(TFM_FP_64BIT)
+   #warning x86-32, SSE2 and ARM, PPC32 optimizations require 32-bit digits (undefining)
+   #undef TFM_FP_64BIT
 #endif
 
 /* multi asms? */
    #endif
    #define TFM_ASM
 #endif
+#ifdef TFM_PPC32
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_PPC64
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
+#ifdef TFM_AVR32
+   #ifdef TFM_ASM
+      #error TFM_ASM already defined!
+   #endif
+   #define TFM_ASM
+#endif
 
 /* we want no asm? */
 #ifdef TFM_NO_ASM
    #undef TFM_X86_64
    #undef TFM_SSE2
    #undef TFM_ARM
+   #undef TFM_PPC32
+   #undef TFM_PPC64
+   #undef TFM_AVR32
    #undef TFM_ASM
 #endif
 
+/* ECC helpers */
+#ifdef TFM_ECC192
+   #ifdef TFM_FP_64BIT
+       #define TFM_MUL3
+       #define TFM_SQR3
+   #else
+       #define TFM_MUL6
+       #define TFM_SQR6
+   #endif
+#endif
+
+#ifdef TFM_ECC224
+   #ifdef TFM_FP_64BIT
+       #define TFM_MUL4
+       #define TFM_SQR4
+   #else
+       #define TFM_MUL7
+       #define TFM_SQR7
+   #endif
+#endif
+
+#ifdef TFM_ECC256
+   #ifdef TFM_FP_64BIT
+       #define TFM_MUL4
+       #define TFM_SQR4
+   #else
+       #define TFM_MUL8
+       #define TFM_SQR8
+   #endif
+#endif
+
+#ifdef TFM_ECC384
+   #ifdef TFM_FP_64BIT
+       #define TFM_MUL6
+       #define TFM_SQR6
+   #else
+       #define TFM_MUL12
+       #define TFM_SQR12
+   #endif
+#endif
+
+#ifdef TFM_ECC521
+   #ifdef TFM_FP_64BIT
+       #define TFM_MUL9
+       #define TFM_SQR9
+   #else
+       #define TFM_MUL17
+       #define TFM_SQR17
+   #endif
+#endif
+
+
 /* some default configurations.
  */
-#if defined(FP_64BIT)
+#if defined(TFM_FP_64BIT)
    /* for GCC only on supported platforms */
 #ifndef CRYPT
-   typedef unsigned long ulong64;
+   typedef SilcUInt64 ulong64;
 #endif
-   typedef ulong64            fp_digit;
-   typedef unsigned long      fp_word __attribute__ ((mode(TI)));
+   typedef ulong64            tfm_fp_digit;
+   typedef unsigned long      tfm_fp_word __attribute__ ((mode(TI)));
 #else
    /* this is to make porting into LibTomCrypt easier :-) */
 #ifndef CRYPT
       typedef signed long long   long64;
    #endif
 #endif
-   typedef unsigned long      fp_digit;
-   typedef ulong64            fp_word;
+   typedef unsigned long      tfm_fp_digit;
+   typedef ulong64            tfm_fp_word;
 #endif
 
 /* # of digits this is */
-#define DIGIT_BIT  (int)((CHAR_BIT) * sizeof(fp_digit))
-#define FP_MASK    (fp_digit)(-1)
-#define FP_SIZE    (FP_MAX_SIZE/DIGIT_BIT)
+#define DIGIT_BIT  (int)((CHAR_BIT) * sizeof(tfm_fp_digit))
+#define TFM_FP_MASK    (tfm_fp_digit)(-1)
+#define TFM_FP_SIZE    (TFM_FP_MAX_SIZE/DIGIT_BIT)
 
 /* signs */
-#define FP_ZPOS     0
-#define FP_NEG      1
+#define TFM_FP_ZPOS     0
+#define TFM_FP_NEG      1
 
 /* return codes */
-#define FP_OKAY     0
-#define FP_VAL      1
-#define FP_MEM      2
+#define TFM_FP_OKAY     0
+#define TFM_FP_VAL      1
+#define TFM_FP_MEM      2
 
 /* equalities */
-#define FP_LT        -1   /* less than */
-#define FP_EQ         0   /* equal to */
-#define FP_GT         1   /* greater than */
+#define TFM_FP_LT        -1   /* less than */
+#define TFM_FP_EQ         0   /* equal to */
+#define TFM_FP_GT         1   /* greater than */
 
 /* replies */
-#define FP_YES        1   /* yes response */
-#define FP_NO         0   /* no response */
+#define TFM_FP_YES        1   /* yes response */
+#define TFM_FP_NO         0   /* no response */
 
 /* a FP type */
-typedef struct {
-    fp_digit dp[FP_SIZE];
-    int      used,
-             sign;
-} fp_int;
+struct tfm_fp_int_struct {
+  SilcStack stack;
+  tfm_fp_digit *dp;
+  unsigned int used;
+  unsigned int alloc : 31;
+  unsigned int sign  : 1;
+};
 
 /* functions */
 
-/* returns a TFM ident string useful for debugging... */
-const char *fp_ident(void);
-
 /* initialize [or zero] an fp int */
-#define fp_init(a)  (void)memset((a), 0, sizeof(fp_int))
-#define fp_zero(a)  fp_init(a)
+#define tfm_fp_init(a) tfm_fp_sinit(NULL, a)
+#define tfm_fp_sinit(s, a)                                             \
+  { (a)->stack = s; (a)->dp = NULL; (a)->alloc = (a)->used = (a)->sign = 0; }
+int tfm_fp_init_size(SilcStack stack, tfm_fp_int *a, int size);
+void tfm_fp_zero(tfm_fp_int *a);
 
 /* zero/even/odd ? */
-#define fp_iszero(a) (((a)->used == 0) ? FP_YES : FP_NO)
-#define fp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? FP_YES : FP_NO)
-#define fp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? FP_YES : FP_NO)
+#define tfm_fp_iszero(a) (((a)->used == 0) ? TFM_FP_YES : TFM_FP_NO)
+#define tfm_fp_iseven(a) (((a)->used >= 0 && (((a)->dp[0] & 1) == 0)) ? TFM_FP_YES : TFM_FP_NO)
+#define tfm_fp_isodd(a)  (((a)->used > 0  && (((a)->dp[0] & 1) == 1)) ? TFM_FP_YES : TFM_FP_NO)
 
 /* set to a small digit */
-void fp_set(fp_int *a, fp_digit b);
+int tfm_fp_set(tfm_fp_int *a, tfm_fp_digit b);
 
 /* copy from a to b */
-#define fp_copy(a, b)      (void)(((a) != (b)) && memcpy((b), (a), sizeof(fp_int)))
-#define fp_init_copy(a, b) fp_copy(b, a)
-
-/* negate and absolute */
-#define fp_neg(a, b)  { fp_copy(a, b); (b)->sign ^= 1; }
-#define fp_abs(a, b)  { fp_copy(a, b); (b)->sign  = 0; }
+int tfm_fp_copy(tfm_fp_int *a, tfm_fp_int *b);
+int tfm_fp_init_copy(tfm_fp_int *a, tfm_fp_int *b, SilcStack stack);
+void tfm_fp_exch(tfm_fp_int *a, tfm_fp_int *b);
 
 /* clamp digits */
-#define fp_clamp(a)   { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : FP_ZPOS; }
+#define tfm_fp_clamp(a)   { while ((a)->used && (a)->dp[(a)->used-1] == 0) --((a)->used); (a)->sign = (a)->used ? (a)->sign : TFM_FP_ZPOS; }
+
+/* negate and absolute */
+#define tfm_fp_neg(a, b)  { tfm_fp_copy(a, b); (b)->sign ^= 1; tfm_fp_clamp(b); }
+#define tfm_fp_abs(a, b)  { tfm_fp_copy(a, b); (b)->sign  = 0; }
 
 /* right shift x digits */
-void fp_rshd(fp_int *a, int x);
+void tfm_fp_rshd(tfm_fp_int *a, int x);
 
 /* left shift x digits */
-void fp_lshd(fp_int *a, int x);
+int tfm_fp_lshd(tfm_fp_int *a, int x);
 
 /* signed comparison */
-int fp_cmp(fp_int *a, fp_int *b);
+int tfm_fp_cmp(tfm_fp_int *a, tfm_fp_int *b);
 
 /* unsigned comparison */
-int fp_cmp_mag(fp_int *a, fp_int *b);
+int tfm_fp_cmp_mag(tfm_fp_int *a, tfm_fp_int *b);
 
 /* power of 2 operations */
-void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d);
-void fp_mod_2d(fp_int *a, int b, fp_int *c);
-void fp_mul_2d(fp_int *a, int b, fp_int *c);
-void fp_2expt (fp_int *a, int b);
-void fp_mul_2(fp_int *a, fp_int *c);
-void fp_div_2(fp_int *a, fp_int *c);
+int tfm_fp_div_2d(tfm_fp_int *a, int b, tfm_fp_int *c, tfm_fp_int *d);
+int tfm_fp_mod_2d(tfm_fp_int *a, int b, tfm_fp_int *c);
+int tfm_fp_mul_2d(tfm_fp_int *a, int b, tfm_fp_int *c);
+int tfm_fp_2expt (tfm_fp_int *a, int b);
+int tfm_fp_mul_2(tfm_fp_int *a, tfm_fp_int *c);
+int tfm_fp_div_2(tfm_fp_int *a, tfm_fp_int *c);
 
 /* Counts the number of lsbs which are zero before the first zero bit */
-int fp_cnt_lsb(fp_int *a);
+int tfm_fp_cnt_lsb(tfm_fp_int *a);
 
 /* c = a + b */
-void fp_add(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_add(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* c = a - b */
-void fp_sub(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_sub(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* c = a * b */
-void fp_mul(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_mul(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* b = a*a  */
-void fp_sqr(fp_int *a, fp_int *b);
+int tfm_fp_sqr(tfm_fp_int *a, tfm_fp_int *b);
 
 /* a/b => cb + d == a */
-int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+int tfm_fp_div(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c, tfm_fp_int *d);
 
 /* c = a mod b, 0 <= c < b  */
-int fp_mod(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_mod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* compare against a single digit */
-int fp_cmp_d(fp_int *a, fp_digit b);
+int tfm_fp_cmp_d(tfm_fp_int *a, tfm_fp_digit b);
 
 /* c = a + b */
-void fp_add_d(fp_int *a, fp_digit b, fp_int *c);
+int tfm_fp_add_d(tfm_fp_int *a, tfm_fp_digit b, tfm_fp_int *c);
 
 /* c = a - b */
-void fp_sub_d(fp_int *a, fp_digit b, fp_int *c);
+int tfm_fp_sub_d(tfm_fp_int *a, tfm_fp_digit b, tfm_fp_int *c);
 
 /* c = a * b */
-void fp_mul_d(fp_int *a, fp_digit b, fp_int *c);
+int tfm_fp_mul_d(tfm_fp_int *a, tfm_fp_digit b, tfm_fp_int *c);
 
 /* a/b => cb + d == a */
-int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d);
+int tfm_fp_div_d(tfm_fp_int *a, tfm_fp_digit b, tfm_fp_int *c, tfm_fp_digit *d);
 
 /* c = a mod b, 0 <= c < b  */
-int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c);
+int tfm_fp_mod_d(tfm_fp_int *a, tfm_fp_digit b, tfm_fp_digit *c);
 
 /* ---> number theory <--- */
 /* d = a + b (mod c) */
-int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+int tfm_fp_addmod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c, tfm_fp_int *d);
 
 /* d = a - b (mod c) */
-int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+int tfm_fp_submod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c, tfm_fp_int *d);
 
 /* d = a * b (mod c) */
-int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+int tfm_fp_mulmod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c, tfm_fp_int *d);
 
 /* c = a * a (mod b) */
-int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_sqrmod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* c = 1/a (mod b) */
-int fp_invmod(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_invmod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* c = (a, b) */
-void fp_gcd(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_gcd(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
 
 /* c = [a, b] */
-void fp_lcm(fp_int *a, fp_int *b, fp_int *c);
+int tfm_fp_lcm(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
+
+int tfm_fp_sqrt(tfm_fp_int *arg, tfm_fp_int *ret);
+int tfm_fp_expt_d(tfm_fp_int * a, tfm_fp_digit b, tfm_fp_int * c);
+int tfm_fp_xor(tfm_fp_int * a, tfm_fp_int * b, tfm_fp_int * c);
+int tfm_fp_and(tfm_fp_int * a, tfm_fp_int * b, tfm_fp_int * c);
+int tfm_fp_or(tfm_fp_int * a, tfm_fp_int * b, tfm_fp_int * c);
 
 /* setups the montgomery reduction */
-int fp_montgomery_setup(fp_int *a, fp_digit *mp);
+int tfm_fp_montgomery_setup(tfm_fp_int *a, tfm_fp_digit *mp);
 
 /* computes a = B**n mod b without division or multiplication useful for
  * normalizing numbers in a Montgomery system.
  */
-void fp_montgomery_calc_normalization(fp_int *a, fp_int *b);
+int tfm_fp_montgomery_calc_normalization(tfm_fp_int *a, tfm_fp_int *b);
 
 /* computes x/R == x (mod N) via Montgomery Reduction */
-void fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp);
+int tfm_fp_montgomery_reduce(tfm_fp_int *a, tfm_fp_int *m, tfm_fp_digit mp);
 
 /* d = a**b (mod c) */
-int fp_exptmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d);
+int tfm_fp_exptmod(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c, tfm_fp_int *d);
 
-/* primality stuff */
+/* radix conersions */
+int tfm_fp_count_bits(tfm_fp_int *a);
 
-/* perform a Miller-Rabin test of a to the base b and store result in "result" */
-void fp_prime_miller_rabin (fp_int * a, fp_int * b, int *result);
+int tfm_fp_unsigned_bin_size(tfm_fp_int *a);
+void tfm_fp_read_unsigned_bin(tfm_fp_int *a, unsigned char *b, int c);
+void tfm_fp_to_unsigned_bin(tfm_fp_int *a, unsigned char *b);
 
-/* 256 trial divisions + 8 Miller-Rabins, returns FP_YES if probable prime  */
-int fp_isprime(fp_int *a);
+int tfm_fp_signed_bin_size(tfm_fp_int *a);
+void tfm_fp_to_signed_bin(tfm_fp_int *a, unsigned char *b);
 
-/* Primality generation flags */
-#define TFM_PRIME_BBS      0x0001 /* BBS style prime */
-#define TFM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
-#define TFM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
-#define TFM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
+int tfm_fp_read_radix(tfm_fp_int *a, char *str, int radix);
+int tfm_fp_toradix(tfm_fp_int *a, char *str, int radix);
+int tfm_fp_toradix_n(tfm_fp_int * a, char *str, int radix, int maxlen);
+int tfm_fp_radix_size(tfm_fp_int *a, int radix, int *size);
 
-/* callback for fp_prime_random, should fill dst with random bytes and return how many read [upto len] */
-typedef int tfm_prime_callback(unsigned char *dst, int len, void *dat);
 
-#define fp_prime_random(a, t, size, bbs, cb, dat) fp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?TFM_PRIME_BBS:0, cb, dat)
+/* VARIOUS LOW LEVEL STUFFS */
+int s_tfm_fp_add(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
+int s_tfm_fp_sub(tfm_fp_int *a, tfm_fp_int *b, tfm_fp_int *c);
+void tfm_fp_reverse(unsigned char *s, int len);
 
-int fp_prime_random_ex(fp_int *a, int t, int size, int flags, tfm_prime_callback cb, void *dat);
+int tfm_fp_mul_comba(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
 
-/* radix conersions */
-int fp_count_bits(fp_int *a);
+#ifdef TFM_SMALL_SET
+void tfm_fp_mul_comba_small(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
 
-int fp_unsigned_bin_size(fp_int *a);
-void fp_read_unsigned_bin(fp_int *a, unsigned char *b, int c);
-void fp_to_unsigned_bin(fp_int *a, unsigned char *b);
+#ifdef TFM_MUL20
+void tfm_fp_mul_comba20(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
+#ifdef TFM_MUL24
+void tfm_fp_mul_comba24(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
+#ifdef TFM_MUL28
+void tfm_fp_mul_comba28(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
+#ifdef TFM_MUL32
+void tfm_fp_mul_comba32(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
+#ifdef TFM_MUL48
+void tfm_fp_mul_comba48(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
+#ifdef TFM_MUL64
+void tfm_fp_mul_comba64(tfm_fp_int *A, tfm_fp_int *B, tfm_fp_int *C);
+#endif
 
-int fp_signed_bin_size(fp_int *a);
-void fp_read_signed_bin(fp_int *a, unsigned char *b, int c);
-void fp_to_signed_bin(fp_int *a, unsigned char *b);
+int tfm_fp_sqr_comba(tfm_fp_int *A, tfm_fp_int *B);
 
-int fp_read_radix(fp_int *a, char *str, int radix);
-int fp_toradix(fp_int *a, char *str, int radix);
-int fp_toradix_n(fp_int * a, char *str, int radix, int maxlen);
-int fp_radix_size(fp_int *a, int radix, int *size);
+#ifdef TFM_SMALL_SET
+void tfm_fp_sqr_comba_small(tfm_fp_int *A, tfm_fp_int *B);
+#endif
 
-/* VARIOUS LOW LEVEL STUFFS */
-void s_fp_add(fp_int *a, fp_int *b, fp_int *c);
-void s_fp_sub(fp_int *a, fp_int *b, fp_int *c);
-void bn_reverse(unsigned char *s, int len);
-void fp_mul_comba(fp_int *A, fp_int *B, fp_int *C);
-#ifdef TFM_HUGE
-void fp_mul_comba32(fp_int *A, fp_int *B, fp_int *C);
-#endif
-#ifdef TFM_LARGE
-void fp_mul_comba16(fp_int *A, fp_int *B, fp_int *C);
-#endif
-void fp_mul_comba8(fp_int *A, fp_int *B, fp_int *C);
-void fp_mul_comba4(fp_int *A, fp_int *B, fp_int *C);
-
-void fp_sqr_comba(fp_int *A, fp_int *B);
-void fp_sqr_comba4(fp_int *A, fp_int *B);
-void fp_sqr_comba8(fp_int *A, fp_int *B);
-#ifdef TFM_LARGE
-void fp_sqr_comba16(fp_int *A, fp_int *B);
-#endif
-#ifdef TFM_HUGE
-void fp_sqr_comba32(fp_int *A, fp_int *B);
-void fp_sqr_comba64(fp_int *A, fp_int *B);
-#endif
-extern const char *fp_s_rmap;
+#ifdef TFM_SQR20
+void tfm_fp_sqr_comba20(tfm_fp_int *A, tfm_fp_int *B);
+#endif
+#ifdef TFM_SQR24
+void tfm_fp_sqr_comba24(tfm_fp_int *A, tfm_fp_int *B);
+#endif
+#ifdef TFM_SQR28
+void tfm_fp_sqr_comba28(tfm_fp_int *A, tfm_fp_int *B);
+#endif
+#ifdef TFM_SQR32
+void tfm_fp_sqr_comba32(tfm_fp_int *A, tfm_fp_int *B);
+#endif
+#ifdef TFM_SQR48
+void tfm_fp_sqr_comba48(tfm_fp_int *A, tfm_fp_int *B);
+#endif
+#ifdef TFM_SQR64
+void tfm_fp_sqr_comba64(tfm_fp_int *A, tfm_fp_int *B);
+#endif
 
 #endif