X-Git-Url: http://git.silcnet.org/gitweb/?a=blobdiff_plain;f=lib%2Fsilcmath%2Ftma.h;h=d651f9634297b023a4e499ea5d114328f1a310b5;hb=e7b6c157b80152bf9fb9266e6bdd93f9fb0db776;hp=99741ebeb351a2b512cc69eda45818894014e0f1;hpb=e4cf49012efbcc14d8f61f3c33aca73dbab55fdf;p=silc.git diff --git a/lib/silcmath/tma.h b/lib/silcmath/tma.h index 99741ebe..d651f963 100644 --- a/lib/silcmath/tma.h +++ b/lib/silcmath/tma.h @@ -10,12 +10,11 @@ * The library is free for all purposes without any express * guarantee it works. * - * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org + * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com */ #ifndef TMA_H #define TMA_H -#include #include #include #include @@ -29,15 +28,18 @@ #undef MP_16BIT #undef CRYPT -#undef MIN -#define MIN(x,y) ((x)<(y)?(x):(y)) -#undef MAX -#define MAX(x,y) ((x)>(y)?(x):(y)) +#ifndef MIN + #define MIN(x,y) ((x)<(y)?(x):(y)) +#endif + +#ifndef MAX + #define MAX(x,y) ((x)>(y)?(x):(y)) +#endif #ifdef __cplusplus extern "C" { -/* C++ compilers don't like assigning void * to mp_digit * */ +/* C++ compilers don't like assigning void * to tma_mp_digit * */ #define OPT_CAST(x) (x *) #else @@ -57,18 +59,18 @@ extern "C" { /* some default configurations. * - * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits - * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits + * A "tma_mp_digit" must be able to hold DIGIT_BIT + 1 bits + * A "tma_mp_word" must be able to hold 2*DIGIT_BIT + 1 bits * - * At the very least a mp_digit must be able to hold 7 bits + * At the very least a tma_mp_digit must be able to hold 7 bits * [any size beyond that is ok provided it doesn't overflow the data type] */ #ifdef MP_8BIT - typedef unsigned char mp_digit; - typedef unsigned short mp_word; + typedef unsigned char tma_mp_digit; + typedef unsigned short tma_mp_word; #elif defined(MP_16BIT) - typedef unsigned short mp_digit; - typedef unsigned long mp_word; + typedef unsigned short tma_mp_digit; + typedef unsigned long tma_mp_word; #elif defined(MP_64BIT) /* for GCC only on supported platforms */ #ifndef CRYPT @@ -76,8 +78,8 @@ extern "C" { typedef signed long long long64; #endif - typedef unsigned long mp_digit; - typedef unsigned long mp_word __attribute__ ((mode(TI))); + typedef unsigned long tma_mp_digit; + typedef unsigned long tma_mp_word __attribute__ ((mode(TI))); #define DIGIT_BIT 60 #else @@ -94,8 +96,8 @@ extern "C" { #endif #endif - typedef unsigned long mp_digit; - typedef ulong64 mp_word; + typedef unsigned long tma_mp_digit; + typedef ulong64 tma_mp_word; #ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ @@ -118,20 +120,20 @@ extern "C" { #else /* prototypes for our heap functions */ extern void *XMALLOC(size_t n); - extern void *REALLOC(void *p, size_t n); + extern void *XREALLOC(void *p, size_t n); extern void *XCALLOC(size_t n, size_t s); extern void XFREE(void *p); #endif #endif -/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ +/* otherwise the bits per digit is calculated automatically from the size of a tma_mp_digit */ #ifndef DIGIT_BIT - #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ + #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(tma_mp_digit) - 1))) /* bits per digit */ #endif #define MP_DIGIT_BIT DIGIT_BIT -#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) +#define MP_MASK ((((tma_mp_digit)1)<<((tma_mp_digit)DIGIT_BIT))-((tma_mp_digit)1)) #define MP_DIGIT_MAX MP_MASK /* equalities */ @@ -153,10 +155,9 @@ extern "C" { /* Primality generation flags */ #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ -#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */ #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ -typedef int mp_err; +typedef int tma_mp_err; /* you'll have to tune these... */ extern int KARATSUBA_MUL_CUTOFF, @@ -170,22 +171,22 @@ extern int KARATSUBA_MUL_CUTOFF, /* default precision */ #ifndef MP_PREC #ifndef MP_LOW_MEM - #define MP_PREC 64 /* default digits of precision */ + #define MP_PREC 32 /* default digits of precision */ #else #define MP_PREC 8 /* default digits of precision */ #endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ -#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) +#define MP_WARRAY (1 << (sizeof(tma_mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) -/* the infamous mp_int structure */ +/* the infamous tma_mp_int structure */ typedef struct { int used, alloc, sign; - mp_digit *dp; -} mp_int; + tma_mp_digit *dp; +} tma_mp_int; -/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ +/* callback for tma_mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); @@ -194,258 +195,258 @@ typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); #define SIGN(m) ((m)->sign) /* error code to char* string */ -char *mp_error_to_string(int code); +char *tma_mp_error_to_string(int code); /* ---> init and deinit bignum functions <--- */ /* init a bignum */ -int mp_init(mp_int *a); +int tma_mp_init(tma_mp_int *a); /* free a bignum */ -void mp_clear(mp_int *a); +void tma_mp_clear(tma_mp_int *a); /* init a null terminated series of arguments */ -int mp_init_multi(mp_int *mp, ...); +int tma_mp_init_multi(tma_mp_int *mp, ...); /* clear a null terminated series of arguments */ -void mp_clear_multi(mp_int *mp, ...); +void tma_mp_clear_multi(tma_mp_int *mp, ...); /* exchange two ints */ -void mp_exch(mp_int *a, mp_int *b); +void tma_mp_exch(tma_mp_int *a, tma_mp_int *b); /* shrink ram required for a bignum */ -int mp_shrink(mp_int *a); +int tma_mp_shrink(tma_mp_int *a); /* grow an int to a given size */ -int mp_grow(mp_int *a, int size); +int tma_mp_grow(tma_mp_int *a, int size); /* init to a given number of digits */ -int mp_init_size(mp_int *a, int size); +int tma_mp_init_size(tma_mp_int *a, int size); /* ---> Basic Manipulations <--- */ -#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) -#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) -#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) +#define tma_mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) +#define tma_mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) +#define tma_mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) /* set to zero */ -void mp_zero(mp_int *a); +void tma_mp_zero(tma_mp_int *a); /* set to a digit */ -void mp_set(mp_int *a, mp_digit b); +void tma_mp_set(tma_mp_int *a, tma_mp_digit b); /* set a 32-bit const */ -int mp_set_int(mp_int *a, unsigned long b); +int tma_mp_set_int(tma_mp_int *a, unsigned long b); /* get a 32-bit value */ -unsigned long mp_get_int(mp_int * a); +unsigned long tma_mp_get_int(tma_mp_int * a); /* initialize and set a digit */ -int mp_init_set (mp_int * a, mp_digit b); +int tma_mp_init_set (tma_mp_int * a, tma_mp_digit b); /* initialize and set 32-bit value */ -int mp_init_set_int (mp_int * a, unsigned long b); +int tma_mp_init_set_int (tma_mp_int * a, unsigned long b); /* copy, b = a */ -int mp_copy(mp_int *a, mp_int *b); +int tma_mp_copy(tma_mp_int *a, tma_mp_int *b); /* inits and copies, a = b */ -int mp_init_copy(mp_int *a, mp_int *b); +int tma_mp_init_copy(tma_mp_int *a, tma_mp_int *b); /* trim unused digits */ -void mp_clamp(mp_int *a); +void tma_mp_clamp(tma_mp_int *a); /* ---> digit manipulation <--- */ /* right shift by "b" digits */ -void mp_rshd(mp_int *a, int b); +void tma_mp_rshd(tma_mp_int *a, int b); /* left shift by "b" digits */ -int mp_lshd(mp_int *a, int b); +int tma_mp_lshd(tma_mp_int *a, int b); /* c = a / 2**b */ -int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); +int tma_mp_div_2d(tma_mp_int *a, int b, tma_mp_int *c, tma_mp_int *d); /* b = a/2 */ -int mp_div_2(mp_int *a, mp_int *b); +int tma_mp_div_2(tma_mp_int *a, tma_mp_int *b); /* c = a * 2**b */ -int mp_mul_2d(mp_int *a, int b, mp_int *c); +int tma_mp_mul_2d(tma_mp_int *a, int b, tma_mp_int *c); /* b = a*2 */ -int mp_mul_2(mp_int *a, mp_int *b); +int tma_mp_mul_2(tma_mp_int *a, tma_mp_int *b); /* c = a mod 2**d */ -int mp_mod_2d(mp_int *a, int b, mp_int *c); +int tma_mp_mod_2d(tma_mp_int *a, int b, tma_mp_int *c); /* computes a = 2**b */ -int mp_2expt(mp_int *a, int b); +int tma_mp_2expt(tma_mp_int *a, int b); /* Counts the number of lsbs which are zero before the first zero bit */ -int mp_cnt_lsb(mp_int *a); +int tma_mp_cnt_lsb(tma_mp_int *a); /* I Love Earth! */ /* makes a pseudo-random int of a given size */ -int mp_rand(mp_int *a, int digits); +int tma_mp_rand(tma_mp_int *a, int digits); /* ---> binary operations <--- */ /* c = a XOR b */ -int mp_xor(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_xor(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* c = a OR b */ -int mp_or(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_or(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* c = a AND b */ -int mp_and(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_and(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* ---> Basic arithmetic <--- */ /* b = -a */ -int mp_neg(mp_int *a, mp_int *b); +int tma_mp_neg(tma_mp_int *a, tma_mp_int *b); /* b = |a| */ -int mp_abs(mp_int *a, mp_int *b); +int tma_mp_abs(tma_mp_int *a, tma_mp_int *b); /* compare a to b */ -int mp_cmp(mp_int *a, mp_int *b); +int tma_mp_cmp(tma_mp_int *a, tma_mp_int *b); /* compare |a| to |b| */ -int mp_cmp_mag(mp_int *a, mp_int *b); +int tma_mp_cmp_mag(tma_mp_int *a, tma_mp_int *b); /* c = a + b */ -int mp_add(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_add(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* c = a - b */ -int mp_sub(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_sub(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* c = a * b */ -int mp_mul(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_mul(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* b = a*a */ -int mp_sqr(mp_int *a, mp_int *b); +int tma_mp_sqr(tma_mp_int *a, tma_mp_int *b); /* a/b => cb + d == a */ -int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int tma_mp_div(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, tma_mp_int *d); /* c = a mod b, 0 <= c < b */ -int mp_mod(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_mod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* ---> single digit functions <--- */ /* compare against a single digit */ -int mp_cmp_d(mp_int *a, mp_digit b); +int tma_mp_cmp_d(tma_mp_int *a, tma_mp_digit b); /* c = a + b */ -int mp_add_d(mp_int *a, mp_digit b, mp_int *c); +int tma_mp_add_d(tma_mp_int *a, tma_mp_digit b, tma_mp_int *c); /* c = a - b */ -int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); +int tma_mp_sub_d(tma_mp_int *a, tma_mp_digit b, tma_mp_int *c); /* c = a * b */ -int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); +int tma_mp_mul_d(tma_mp_int *a, tma_mp_digit b, tma_mp_int *c); /* a/b => cb + d == a */ -int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); +int tma_mp_div_d(tma_mp_int *a, tma_mp_digit b, tma_mp_int *c, tma_mp_digit *d); /* a/3 => 3c + d == a */ -int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); +int tma_mp_div_3(tma_mp_int *a, tma_mp_int *c, tma_mp_digit *d); /* c = a**b */ -int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); +int tma_mp_expt_d(tma_mp_int *a, tma_mp_digit b, tma_mp_int *c); /* c = a mod b, 0 <= c < b */ -int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); +int tma_mp_mod_d(tma_mp_int *a, tma_mp_digit b, tma_mp_digit *c); /* ---> number theory <--- */ /* d = a + b (mod c) */ -int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int tma_mp_addmod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, tma_mp_int *d); /* d = a - b (mod c) */ -int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int tma_mp_submod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, tma_mp_int *d); /* d = a * b (mod c) */ -int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int tma_mp_mulmod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, tma_mp_int *d); /* c = a * a (mod b) */ -int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_sqrmod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* c = 1/a (mod b) */ -int mp_invmod(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_invmod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* c = (a, b) */ -int mp_gcd(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_gcd(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* produces value such that U1*a + U2*b = U3 */ -int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); +int tma_mp_exteuclid(tma_mp_int *a, tma_mp_int *b, tma_mp_int *U1, tma_mp_int *U2, tma_mp_int *U3); /* c = [a, b] or (a*b)/(a, b) */ -int mp_lcm(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_lcm(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* finds one of the b'th root of a, such that |c|**b <= |a| * * returns error if a < 0 and b is even */ -int mp_n_root(mp_int *a, mp_digit b, mp_int *c); +int tma_mp_n_root(tma_mp_int *a, tma_mp_digit b, tma_mp_int *c); /* special sqrt algo */ -int mp_sqrt(mp_int *arg, mp_int *ret); +int tma_mp_sqrt(tma_mp_int *arg, tma_mp_int *ret); /* is number a square? */ -int mp_is_square(mp_int *arg, int *ret); +int tma_mp_is_square(tma_mp_int *arg, int *ret); /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ -int mp_jacobi(mp_int *a, mp_int *n, int *c); +int tma_mp_jacobi(tma_mp_int *a, tma_mp_int *n, int *c); /* used to setup the Barrett reduction for a given modulus b */ -int mp_reduce_setup(mp_int *a, mp_int *b); +int tma_mp_reduce_setup(tma_mp_int *a, tma_mp_int *b); /* Barrett Reduction, computes a (mod b) with a precomputed value c * * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely - * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. + * compute the reduction as -1 * tma_mp_reduce(tma_mp_abs(a)) [pseudo code]. */ -int mp_reduce(mp_int *a, mp_int *b, mp_int *c); +int tma_mp_reduce(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); /* setups the montgomery reduction */ -int mp_montgomery_setup(mp_int *a, mp_digit *mp); +int tma_mp_montgomery_setup(tma_mp_int *a, tma_mp_digit *mp); /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ -int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); +int tma_mp_montgomery_calc_normalization(tma_mp_int *a, tma_mp_int *b); /* computes x/R == x (mod N) via Montgomery Reduction */ -int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); +int tma_mp_montgomery_reduce(tma_mp_int *a, tma_mp_int *m, tma_mp_digit mp); /* returns 1 if a is a valid DR modulus */ -int mp_dr_is_modulus(mp_int *a); +int tma_mp_dr_is_modulus(tma_mp_int *a); -/* sets the value of "d" required for mp_dr_reduce */ -void mp_dr_setup(mp_int *a, mp_digit *d); +/* sets the value of "d" required for tma_mp_dr_reduce */ +void tma_mp_dr_setup(tma_mp_int *a, tma_mp_digit *d); /* reduces a modulo b using the Diminished Radix method */ -int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); +int tma_mp_dr_reduce(tma_mp_int *a, tma_mp_int *b, tma_mp_digit mp); -/* returns true if a can be reduced with mp_reduce_2k */ -int mp_reduce_is_2k(mp_int *a); +/* returns true if a can be reduced with tma_mp_reduce_2k */ +int tma_mp_reduce_is_2k(tma_mp_int *a); /* determines k value for 2k reduction */ -int mp_reduce_2k_setup(mp_int *a, mp_digit *d); +int tma_mp_reduce_2k_setup(tma_mp_int *a, tma_mp_digit *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); +int tma_mp_reduce_2k(tma_mp_int *a, tma_mp_int *n, tma_mp_digit d); -/* returns true if a can be reduced with mp_reduce_2k_l */ -int mp_reduce_is_2k_l(mp_int *a); +/* returns true if a can be reduced with tma_mp_reduce_2k_l */ +int tma_mp_reduce_is_2k_l(tma_mp_int *a); /* determines k value for 2k reduction */ -int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); +int tma_mp_reduce_2k_setup_l(tma_mp_int *a, tma_mp_int *d); /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ -int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); +int tma_mp_reduce_2k_l(tma_mp_int *a, tma_mp_int *n, tma_mp_int *d); /* d = a**b (mod c) */ -int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); +int tma_mp_exptmod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, tma_mp_int *d); /* ---> Primes <--- */ @@ -457,25 +458,25 @@ int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); #endif /* table of first PRIME_SIZE primes */ -extern const mp_digit ltm_prime_tab[]; +extern const tma_mp_digit ltm_prime_tab[]; /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ -int mp_prime_is_divisible(mp_int *a, int *result); +int tma_mp_prime_is_divisible(tma_mp_int *a, int *result); /* performs one Fermat test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ -int mp_prime_fermat(mp_int *a, mp_int *b, int *result); +int tma_mp_prime_fermat(tma_mp_int *a, tma_mp_int *b, int *result); /* performs one Miller-Rabin test of "a" using base "b". * Sets result to 0 if composite or 1 if probable prime */ -int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); +int tma_mp_prime_miller_rabin(tma_mp_int *a, tma_mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ -int mp_prime_rabin_miller_trials(int size); +int tma_mp_prime_rabin_miller_trials(int size); /* performs t rounds of Miller-Rabin on "a" using the first * t prime bases. Also performs an initial sieve of trial @@ -484,14 +485,14 @@ int mp_prime_rabin_miller_trials(int size); * * Sets result to 1 if probably prime, 0 otherwise */ -int mp_prime_is_prime(mp_int *a, int t, int *result); +int tma_mp_prime_is_prime(tma_mp_int *a, int t, int *result); /* finds the next prime after the number "a" using "t" trials * of Miller-Rabin. * * bbs_style = 1 means the prime must be congruent to 3 mod 4 */ -int mp_prime_next_prime(mp_int *a, int t, int bbs_style); +int tma_mp_prime_next_prime(tma_mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), * call with bbs = 1 if you want it to be congruent to 3 mod 4 @@ -502,7 +503,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); * * The prime generated will be larger than 2^(8*size). */ -#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) +#define tma_mp_prime_random(a, t, size, bbs, cb, dat) tma_mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) /* makes a truly random prime of a given size (bits), * @@ -518,66 +519,69 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); * so it can be NULL * */ -int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); +int tma_mp_prime_random_ex(tma_mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); /* ---> radix conversion <--- */ -int mp_count_bits(mp_int *a); - -int mp_unsigned_bin_size(mp_int *a); -int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); -int mp_to_unsigned_bin(mp_int *a, unsigned char *b); -int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); - -int mp_signed_bin_size(mp_int *a); -int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); -int mp_to_signed_bin(mp_int *a, unsigned char *b); -int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); - -int mp_read_radix(mp_int *a, const char *str, int radix); -int mp_toradix(mp_int *a, char *str, int radix); -int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); -int mp_radix_size(mp_int *a, int radix, int *size); - -int mp_fread(mp_int *a, int radix, FILE *stream); -int mp_fwrite(mp_int *a, int radix, FILE *stream); - -#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) -#define mp_raw_size(mp) mp_signed_bin_size(mp) -#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) -#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) -#define mp_mag_size(mp) mp_unsigned_bin_size(mp) -#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) - -#define mp_tobinary(M, S) mp_toradix((M), (S), 2) -#define mp_tooctal(M, S) mp_toradix((M), (S), 8) -#define mp_todecimal(M, S) mp_toradix((M), (S), 10) -#define mp_tohex(M, S) mp_toradix((M), (S), 16) +int tma_mp_count_bits(tma_mp_int *a); + +int tma_mp_unsigned_bin_size(tma_mp_int *a); +int tma_mp_read_unsigned_bin(tma_mp_int *a, const unsigned char *b, int c); +int tma_mp_to_unsigned_bin(tma_mp_int *a, unsigned char *b); +int tma_mp_to_unsigned_bin_n (tma_mp_int * a, unsigned char *b, unsigned long *outlen); + +int tma_mp_signed_bin_size(tma_mp_int *a); +int tma_mp_read_signed_bin(tma_mp_int *a, const unsigned char *b, int c); +int tma_mp_to_signed_bin(tma_mp_int *a, unsigned char *b); +int tma_mp_to_signed_bin_n (tma_mp_int * a, unsigned char *b, unsigned long *outlen); + +int tma_mp_read_radix(tma_mp_int *a, const char *str, int radix); +int tma_mp_toradix(tma_mp_int *a, char *str, int radix); +int tma_mp_toradix_n(tma_mp_int * a, char *str, int radix, int maxlen); +int tma_mp_radix_size(tma_mp_int *a, int radix, int *size); + +int tma_mp_fread(tma_mp_int *a, int radix, FILE *stream); +int tma_mp_fwrite(tma_mp_int *a, int radix, FILE *stream); + +#define tma_mp_read_raw(mp, str, len) tma_mp_read_signed_bin((mp), (str), (len)) +#define tma_mp_raw_size(mp) tma_mp_signed_bin_size(mp) +#define tma_mp_toraw(mp, str) tma_mp_to_signed_bin((mp), (str)) +#define tma_mp_read_mag(mp, str, len) tma_mp_read_unsigned_bin((mp), (str), (len)) +#define tma_mp_mag_size(mp) tma_mp_unsigned_bin_size(mp) +#define tma_mp_tomag(mp, str) tma_mp_to_unsigned_bin((mp), (str)) + +#define tma_mp_tobinary(M, S) tma_mp_toradix((M), (S), 2) +#define tma_mp_tooctal(M, S) tma_mp_toradix((M), (S), 8) +#define tma_mp_todecimal(M, S) tma_mp_toradix((M), (S), 10) +#define tma_mp_tohex(M, S) tma_mp_toradix((M), (S), 16) /* lowlevel functions, do not call! */ -int s_mp_add(mp_int *a, mp_int *b, mp_int *c); -int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); -#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) -int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); -int fast_s_mp_sqr(mp_int *a, mp_int *b); -int s_mp_sqr(mp_int *a, mp_int *b); -int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); -int mp_karatsuba_sqr(mp_int *a, mp_int *b); -int mp_toom_sqr(mp_int *a, mp_int *b); -int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); -int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); -int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); -int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); -int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); +int s_tma_mp_add(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); +int s_tma_mp_sub(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); +#define s_tma_mp_mul(a, b, c) s_tma_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) +int fast_s_tma_mp_mul_digs(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, int digs); +int s_tma_mp_mul_digs(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, int digs); +int fast_s_tma_mp_mul_high_digs(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, int digs); +int s_tma_mp_mul_high_digs(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c, int digs); +int fast_s_tma_mp_sqr(tma_mp_int *a, tma_mp_int *b); +int s_tma_mp_sqr(tma_mp_int *a, tma_mp_int *b); +int tma_mp_karatsuba_mul(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); +int tma_mp_toom_mul(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); +int tma_mp_karatsuba_sqr(tma_mp_int *a, tma_mp_int *b); +int tma_mp_toom_sqr(tma_mp_int *a, tma_mp_int *b); +int fast_tma_mp_invmod(tma_mp_int *a, tma_mp_int *b, tma_mp_int *c); +int tma_mp_invmod_slow (tma_mp_int * a, tma_mp_int * b, tma_mp_int * c); +int fast_tma_mp_montgomery_reduce(tma_mp_int *a, tma_mp_int *m, tma_mp_digit mp); +int tma_mp_exptmod_fast(tma_mp_int *G, tma_mp_int *X, tma_mp_int *P, tma_mp_int *Y, int mode); +int s_tma_mp_exptmod (tma_mp_int * G, tma_mp_int * X, tma_mp_int * P, tma_mp_int * Y, int mode); void bn_reverse(unsigned char *s, int len); -extern const char *mp_s_rmap; +extern const char *tma_mp_s_rmap; #ifdef __cplusplus } #endif +/* $Source$ */ +/* $Revision$ */ +/* $Date$ */ #endif /* TMA_H */